Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

F4D: Factorized 4D Convolutional Neural Network for Efficient Video-level Representation Learning (2401.08609v1)

Published 28 Nov 2023 in cs.CV

Abstract: Recent studies have shown that video-level representation learning is crucial to the capture and understanding of the long-range temporal structure for video action recognition. Most existing 3D convolutional neural network (CNN)-based methods for video-level representation learning are clip-based and focus only on short-term motion and appearances. These CNN-based methods lack the capacity to incorporate and model the long-range spatiotemporal representation of the underlying video and ignore the long-range video-level context during training. In this study, we propose a factorized 4D CNN architecture with attention (F4D) that is capable of learning more effective, finer-grained, long-term spatiotemporal video representations. We demonstrate that the proposed F4D architecture yields significant performance improvements over the conventional 2D, and 3D CNN architectures proposed in the literature. Experiment evaluation on five action recognition benchmark datasets, i.e., Something-Something-v1, SomethingSomething-v2, Kinetics-400, UCF101, and HMDB51 demonstrate the effectiveness of the proposed F4D network architecture for video-level action recognition.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.