Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SAM4UDASS: When SAM Meets Unsupervised Domain Adaptive Semantic Segmentation in Intelligent Vehicles (2401.08604v1)

Published 22 Nov 2023 in cs.CV and cs.AI

Abstract: Semantic segmentation plays a critical role in enabling intelligent vehicles to comprehend their surrounding environments. However, deep learning-based methods usually perform poorly in domain shift scenarios due to the lack of labeled data for training. Unsupervised domain adaptation (UDA) techniques have emerged to bridge the gap across different driving scenes and enhance model performance on unlabeled target environments. Although self-training UDA methods have achieved state-of-the-art results, the challenge of generating precise pseudo-labels persists. These pseudo-labels tend to favor majority classes, consequently sacrificing the performance of rare classes or small objects like traffic lights and signs. To address this challenge, we introduce SAM4UDASS, a novel approach that incorporates the Segment Anything Model (SAM) into self-training UDA methods for refining pseudo-labels. It involves Semantic-Guided Mask Labeling, which assigns semantic labels to unlabeled SAM masks using UDA pseudo-labels. Furthermore, we devise fusion strategies aimed at mitigating semantic granularity inconsistency between SAM masks and the target domain. SAM4UDASS innovatively integrate SAM with UDA for semantic segmentation in driving scenes and seamlessly complements existing self-training UDA methodologies. Extensive experiments on synthetic-to-real and normal-to-adverse driving datasets demonstrate its effectiveness. It brings more than 3% mIoU gains on GTA5-to-Cityscapes, SYNTHIA-to-Cityscapes, and Cityscapes-to-ACDC when using DAFormer and achieves SOTA when using MIC. The code will be available at https://github.com/ywher/SAM4UDASS.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube