Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From Coarse to Fine: Efficient Training for Audio Spectrogram Transformers (2401.08415v1)

Published 16 Jan 2024 in cs.SD, cs.LG, and eess.AS

Abstract: Transformers have become central to recent advances in audio classification. However, training an audio spectrogram transformer, e.g. AST, from scratch can be resource and time-intensive. Furthermore, the complexity of transformers heavily depends on the input audio spectrogram size. In this work, we aim to optimize AST training by linking to the resolution in the time-axis. We introduce multi-phase training of audio spectrogram transformers by connecting the seminal idea of coarse-to-fine with transformer models. To achieve this, we propose a set of methods for temporal compression. By employing one of these methods, the transformer model learns from lower-resolution (coarse) data in the initial phases, and then is fine-tuned with high-resolution data later in a curriculum learning strategy. Experimental results demonstrate that the proposed training mechanism for AST leads to improved (or on-par) performance with faster convergence, i.e. requiring fewer computational resources and less time. This approach is also generalizable to other AST-based methods regardless of their learning paradigms.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com