Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mitigating Bias in Machine Learning Models for Phishing Webpage Detection (2401.08363v1)

Published 16 Jan 2024 in cs.CR

Abstract: The widespread accessibility of the Internet has led to a surge in online fraudulent activities, underscoring the necessity of shielding users' sensitive information from cybercriminals. Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs, aiming to deceive users into sharing their sensitive information, often for identity theft or financial gain. Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models. However, these existing techniques encounter unresolved issues. This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets, and proposes a potential solution in the form of a tool engineered to alleviate bias in ML models. Such a tool can generate phishing webpages for any given set of legitimate URLs, infusing randomly selected content and visual-based phishing features. Furthermore, we contend that the tool holds the potential to assess the efficacy of existing phishing detection solutions, especially those trained on confined datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.