Papers
Topics
Authors
Recent
2000 character limit reached

Multi-scale 2D Temporal Map Diffusion Models for Natural Language Video Localization (2401.08232v1)

Published 16 Jan 2024 in cs.CV

Abstract: Natural Language Video Localization (NLVL), grounding phrases from natural language descriptions to corresponding video segments, is a complex yet critical task in video understanding. Despite ongoing advancements, many existing solutions lack the capability to globally capture temporal dynamics of the video data. In this study, we present a novel approach to NLVL that aims to address this issue. Our method involves the direct generation of a global 2D temporal map via a conditional denoising diffusion process, based on the input video and language query. The main challenges are the inherent sparsity and discontinuity of a 2D temporal map in devising the diffusion decoder. To address these challenges, we introduce a multi-scale technique and develop an innovative diffusion decoder. Our approach effectively encapsulates the interaction between the query and video data across various time scales. Experiments on the Charades and DiDeMo datasets underscore the potency of our design.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.