Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed Stackelberg Equilibrium Seeking for Networked Multi-Leader Multi-Follower Games with A Clustered Information Structure (2401.08144v1)

Published 16 Jan 2024 in eess.SY and cs.SY

Abstract: The Stackelberg game depicts a leader-follower relationship wherein decisions are made sequentially, and the Stackelberg equilibrium represents an expected optimal solution when the leader can anticipate the rational response of the follower. Motivated by control of network systems with two levels of decision-making hierarchy, such as the management of energy networks and power coordination at cellular networks, a networked multi-leaders and multi-followers Stackelberg game is proposed. Due to the constraint of limited information interaction among players, a clustered information structure is assumed that each leader can only communicate with a portion of overall followers, namely its subordinated followers, and also only with its local neighboring leaders. In this case, the leaders cannot fully anticipate the collective rational response of all followers with its local information. To address Stackelberg equilibrium seeking under this partial information structure, we propose a distributed seeking algorithm based on implicit gradient estimation and network consensus mechanisms. We rigorously prove the convergence of the algorithm for both diminishing and constant step sizes under strict and strong monotonicity conditions, respectively. Furthermore, the model and the algorithm can also incorporate linear equality and inequality constraints into the followers' optimization problems, with the approach of the interior point barrier function. Finally, we present numerical simulations in applications to corroborate our claims on the proposed framework.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)