Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fairness Concerns in App Reviews: A Study on AI-based Mobile Apps (2401.08097v4)

Published 16 Jan 2024 in cs.SE, cs.AI, and cs.CY

Abstract: Fairness is one of the socio-technical concerns that must be addressed in software systems. Considering the popularity of mobile software applications (apps) among a wide range of individuals worldwide, mobile apps with unfair behaviors and outcomes can affect a significant proportion of the global population, potentially more than any other type of software system. Users express a wide range of socio-technical concerns in mobile app reviews. This research aims to investigate fairness concerns raised in mobile app reviews. Our research focuses on AI-based mobile app reviews as the chance of unfair behaviors and outcomes in AI-based mobile apps may be higher than in non-AI-based apps. To this end, we first manually constructed a ground-truth dataset, including 1,132 fairness and 1,473 non-fairness reviews. Leveraging the ground-truth dataset, we developed and evaluated a set of machine learning and deep learning models that distinguish fairness reviews from non-fairness reviews. Our experiments show that our best-performing model can detect fairness reviews with a precision of 94%. We then applied the best-performing model on approximately 9.5M reviews collected from 108 AI-based apps and identified around 92K fairness reviews. Next, applying the K-means clustering technique to the 92K fairness reviews, followed by manual analysis, led to the identification of six distinct types of fairness concerns (e.g., 'receiving different quality of features and services in different platforms and devices' and 'lack of transparency and fairness in dealing with user-generated content'). Finally, the manual analysis of 2,248 app owners' responses to the fairness reviews identified six root causes (e.g., 'copyright issues') that app owners report to justify fairness concerns.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube