Papers
Topics
Authors
Recent
2000 character limit reached

Transformer-based Video Saliency Prediction with High Temporal Dimension Decoding (2401.07942v1)

Published 15 Jan 2024 in cs.CV and cs.MM

Abstract: In recent years, finding an effective and efficient strategy for exploiting spatial and temporal information has been a hot research topic in video saliency prediction (VSP). With the emergence of spatio-temporal transformers, the weakness of the prior strategies, e.g., 3D convolutional networks and LSTM-based networks, for capturing long-range dependencies has been effectively compensated. While VSP has drawn benefits from spatio-temporal transformers, finding the most effective way for aggregating temporal features is still challenging. To address this concern, we propose a transformer-based video saliency prediction approach with high temporal dimension decoding network (THTD-Net). This strategy accounts for the lack of complex hierarchical interactions between features that are extracted from the transformer-based spatio-temporal encoder: in particular, it does not require multiple decoders and aims at gradually reducing temporal features' dimensions in the decoder. This decoder-based architecture yields comparable performance to multi-branch and over-complicated models on common benchmarks such as DHF1K, UCF-sports and Hollywood-2.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.