Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A three-grid high-order immersed finite element method for the analysis of CAD models (2401.07823v2)

Published 15 Jan 2024 in math.NA and cs.NA

Abstract: The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. We discretise physical fields on the finite element grid using high-order Lagrange basis functions. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains given by complex CAD models and discretised with tens of millions of degrees of freedom.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 26 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube