Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Empirical Evidence for the Fragment level Understanding on Drug Molecular Structure of LLMs (2401.07657v1)

Published 15 Jan 2024 in cs.LG, cs.CE, and q-bio.BM

Abstract: AI for drug discovery has been a research hotspot in recent years, and SMILES-based LLMs has been increasingly applied in drug molecular design. However, no work has explored whether and how LLMs understand the chemical spatial structure from 1D sequences. In this work, we pre-train a transformer model on chemical language and fine-tune it toward drug design objectives, and investigate the correspondence between high-frequency SMILES substrings and molecular fragments. The results indicate that LLMs can understand chemical structures from the perspective of molecular fragments, and the structural knowledge learned through fine-tuning is reflected in the high-frequency SMILES substrings generated by the model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com