Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Empirical Evidence for the Fragment level Understanding on Drug Molecular Structure of LLMs (2401.07657v1)

Published 15 Jan 2024 in cs.LG, cs.CE, and q-bio.BM

Abstract: AI for drug discovery has been a research hotspot in recent years, and SMILES-based LLMs has been increasingly applied in drug molecular design. However, no work has explored whether and how LLMs understand the chemical spatial structure from 1D sequences. In this work, we pre-train a transformer model on chemical language and fine-tune it toward drug design objectives, and investigate the correspondence between high-frequency SMILES substrings and molecular fragments. The results indicate that LLMs can understand chemical structures from the perspective of molecular fragments, and the structural knowledge learned through fine-tuning is reflected in the high-frequency SMILES substrings generated by the model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: