Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CREAD: A Classification-Restoration Framework with Error Adaptive Discretization for Watch Time Prediction in Video Recommender Systems (2401.07521v1)

Published 15 Jan 2024 in cs.IR

Abstract: The watch time is a significant indicator of user satisfaction in video recommender systems. However, the prediction of watch time as a target variable is often hindered by its highly imbalanced distribution with a scarcity of observations for larger target values and over-populated samples for small values. State-of-the-art watch time prediction models discretize the continuous watch time into a set of buckets in order to consider the distribution of watch time. However, it is highly uninvestigated how these discrete buckets should be created from the continuous watch time distribution, and existing discretization approaches suffer from either a large learning error or a large restoration error. To address this challenge, we propose a Classification-Restoration framework with Error-Adaptive-Discretization (CREAD) to accurately predict the watch time. The proposed framework contains a discretization module, a classification module, and a restoration module. It predicts the watch time through multiple classification problems. The discretization process is a key contribution of the CREAD framework. We theoretically analyze the impacts of the discretization on the learning error and the restoration error, and then propose the error-adaptive discretization (EAD) technique to better balance the two errors, which achieves better performance over traditional discretization approaches. We conduct detailed offline evaluations on a public dataset and an industrial dataset, both showing performance gains through the proposed approach. Moreover, We have fully launched our framework to Kwai App, an online video platform, which resulted in a significant increase in users' video watch time by 0.29% through A/B testing. These results highlight the effectiveness of the CREAD framework in watch time prediction in video recommender systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.