Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergency Localization for Mobile Ground Users: An Adaptive UAV Trajectory Planning Method (2401.07256v1)

Published 14 Jan 2024 in cs.MA

Abstract: In emergency search and rescue scenarios, the quick location of trapped people is essential. However, disasters can render the Global Positioning System (GPS) unusable. Unmanned aerial vehicles (UAVs) with localization devices can serve as mobile anchors due to their agility and high line-of-sight (LoS) probability. Nonetheless, the number of available UAVs during the initial stages of disaster relief is limited, and innovative methods are needed to quickly plan UAV trajectories to locate non-uniformly distributed dynamic targets while ensuring localization accuracy. To address this challenge, we design a single UAV localization method without hovering, use the maximum likelihood estimation (MLE) method to estimate the location of mobile users and define the upper bound of the localization error by considering users' movement.Combining this localization method and localization error-index, we utilize the enhanced particle swarm optimization (EPSO) algorithm and edge access strategy to develop a low complexity localization-oriented adaptive trajectory planning algorithm. Simulation results demonstrate that our method outperforms other baseline algorithms, enabling faster localization without compromising localization accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. L. Wang, J. Zhang, J. Chuan, R. Ma, and A. Fei, “Edge intelligence for mission cognitive wireless emergency networks,” IEEE Wireless Communications, vol. 27, no. 4, pp. 103–109, 2020.
  2. T. B. W. Alshrafi, U. Engel, “Compact controlled reception pattern antenna for interference mitigation tasks of global navigation satellite system receivers,” IET Microwaves Antennas Propag., vol. 9, pp. 593–601, 2015.
  3. L. Wang, H. Wu, Y. Ding, W. Chen, and H. V. Poor, “Hypergraph-based wireless distributed storage optimization for cellular d2d underlays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 10, pp. 2650–2666, 2016.
  4. H. Wu, J. Chen, W. Xu, N. Cheng, W. Shi, L. Wang, and X. Shen, “Delay-minimized edge caching in heterogeneous vehicular networks: A matching-based approach,” IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6409–6424, 2020.
  5. L. Wang, H. Wu, Z. Han, P. Zhang, and H. V. Poor, “Multi-hop cooperative caching in social iot using matching theory,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2127–2145, 2018.
  6. H. Wu, F. Lyu, C. Zhou, J. Chen, L. Wang, and X. Shen, “Optimal uav caching and trajectory in aerial-assisted vehicular networks: A learning-based approach,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 12, pp. 2783–2797, 2020.
  7. W. Li, L. Wang, and A. Fei, “Minimizing packet expiration loss with path planning in uav-assisted data sensing,” IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1520–1523, 2019.
  8. G. Han, X. Yang, L. Liu, W. Zhang, and M. Guizani, “A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks,” IEEE Trans. Emerging Top. Comput., vol. 8, no. 1, pp. 115–125, 2020.
  9. P.-H. Tsai, G.-R. Shih, W.-D. Cheng, and R.-G. Tsai, “σ𝜎\sigmaitalic_σ -scan: A mobile beacon-assisted localization path-planning algorithm for wireless sensor networks,” IEEE Sens. J., vol. 19, no. 23, pp. 11 492–11 502, 2019.
  10. D. Ebrahimi, S. Sharafeddine, P.-H. Ho et al., “Autonomous UAV trajectory for localizing ground objects: A reinforcement learning approach,” IEEE Trans. Mob. Comput., vol. 20, no. 4, pp. 1312–1324, 2021.
  11. X. Zhu, Y. Wang, and L. Xu, “Minimizing the maximum length of flight paths for UAVs providing location service to ground targets,” IEEE Internet Things J., vol. 9, no. 12, pp. 9904–9917, 2022.
  12. J. Wu, W. Yuan, F. Liu, Y. Cui, X. Meng, and H. Huang, “UAV-based target tracking: Integrating sensing into communication signals,” in 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2022, pp. 309–313.
  13. Z. Yongsheng, H. Dexiu, Z. Yongjun et al., “Moving target localization for multistatic passive radar using delay, doppler and doppler rate measurements,” J. Syst. Eng. Electron., vol. 31, no. 5, pp. 939–949, 2020.
  14. A. Zanella, “Best practice in rss measurements and ranging,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2662–2686, 2016.
  15. X. Yu, Z. Liu, L. Xu, and L. Wang, “Lifetime maximization for uav-enabled integrated localization and communication networks in emergency scenarios,” in 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), 2022, pp. 905–909.
  16. Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing uav,” IEEE transactions on wireless communications, vol. 18, no. 4, pp. 2329–2345, 2019.

Summary

We haven't generated a summary for this paper yet.