Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Data-Driven Predictive Control for Unknown Linear Time-Invariant Systems (2401.07222v1)

Published 14 Jan 2024 in eess.SY and cs.SY

Abstract: This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input-state-output or input-output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound of a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. Further, the proposed predictive control scheme features an infinite prediction horizon, potentially resulting in superior overall control performance compared to existing methods with finite prediction horizons. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.