Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Graph Convolutional Network for Dynamic Graph Representation Learning (2401.07065v1)

Published 13 Jan 2024 in cs.LG and cs.AI

Abstract: Dynamic graphs (DG) describe dynamic interactions between entities in many practical scenarios. Most existing DG representation learning models combine graph convolutional network and sequence neural network, which model spatial-temporal dependencies through two different types of neural networks. However, this hybrid design cannot well capture the spatial-temporal continuity of a DG. In this paper, we propose a tensor graph convolutional network to learn DG representations in one convolution framework based on the tensor product with the following two-fold ideas: a) representing the information of DG by tensor form; b) adopting tensor product to design a tensor graph convolutional network modeling spatial-temporal feature simultaneously. Experiments on real-world DG datasets demonstrate that our model obtains state-of-the-art performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.