Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tensor Graph Convolutional Network for Dynamic Graph Representation Learning (2401.07065v1)

Published 13 Jan 2024 in cs.LG and cs.AI

Abstract: Dynamic graphs (DG) describe dynamic interactions between entities in many practical scenarios. Most existing DG representation learning models combine graph convolutional network and sequence neural network, which model spatial-temporal dependencies through two different types of neural networks. However, this hybrid design cannot well capture the spatial-temporal continuity of a DG. In this paper, we propose a tensor graph convolutional network to learn DG representations in one convolution framework based on the tensor product with the following two-fold ideas: a) representing the information of DG by tensor form; b) adopting tensor product to design a tensor graph convolutional network modeling spatial-temporal feature simultaneously. Experiments on real-world DG datasets demonstrate that our model obtains state-of-the-art performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.