Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle Accident Recordings (2401.07063v1)

Published 13 Jan 2024 in cs.SE

Abstract: The rapid progress of autonomous vehicles~(AVs) has brought the prospect of a driverless future closer than ever. Recent fatalities, however, have emphasized the importance of safety validation through large-scale testing. Multiple approaches achieve this fully automatically using high-fidelity simulators, i.e., by generating diverse driving scenarios and evaluating autonomous driving systems~(ADSs) against different test oracles. While effective at finding violations, these approaches do not identify the decisions and actions that \emph{caused} them -- information that is critical for improving the safety of ADSs. To address this challenge, we propose ACAV, an automated framework designed to conduct causality analysis for AV accident recordings in two stages. First, we apply feature extraction schemas based on the messages exchanged between ADS modules, and use a weighted voting method to discard frames of the recording unrelated to the accident. Second, we use safety specifications to identify safety-critical frames and deduce causal events by applying CAT -- our causal analysis tool -- to a station-time graph. We evaluate ACAV on the Apollo ADS, finding that it can identify five distinct types of causal events in 93.64% of 110 accident recordings generated by an AV testing engine. We further evaluated ACAV on 1206 accident recordings collected from versions of Apollo injected with specific faults, finding that it can correctly identify causal events in 96.44% of the accidents triggered by prediction errors, and 85.73% of the accidents triggered by planning errors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube