Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leveraging Machine Learning for Wi-Fi-based Environmental Continuous Two-Factor Authentication (2401.06612v1)

Published 12 Jan 2024 in cs.CR

Abstract: The traditional two-factor authentication (2FA) methods primarily rely on the user manually entering a code or token during the authentication process. This can be burdensome and time-consuming, particularly for users who must be authenticated frequently. To tackle this challenge, we present a novel 2FA approach replacing the user's input with decisions made by Machine Learning (ML) that continuously verifies the user's identity with zero effort. Our system exploits unique environmental features associated with the user, such as beacon frame characteristics and Received Signal Strength Indicator (RSSI) values from Wi-Fi Access Points (APs). These features are gathered and analyzed in real-time by our ML algorithm to ascertain the user's identity. For enhanced security, our system mandates that the user's two devices (i.e., a login device and a mobile device) be situated within a predetermined proximity before granting access. This precaution ensures that unauthorized users cannot access sensitive information or systems, even with the correct login credentials. Through experimentation, we have demonstrated our system's effectiveness in determining the location of the user's devices based on beacon frame characteristics and RSSI values, achieving an accuracy of 92.4%. Additionally, we conducted comprehensive security analysis experiments to evaluate the proposed 2FA system's resilience against various cyberattacks. Our findings indicate that the system exhibits robustness and reliability in the face of these threats. The scalability, flexibility, and adaptability of our system render it a promising option for organizations and users seeking a secure and convenient authentication system.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube