Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Initial Analysis of Data-Driven Haptic Search for the Smart Suction Cup (2401.06354v1)

Published 21 Oct 2023 in cs.RO

Abstract: Suction cups offer a useful gripping solution, particularly in industrial robotics and warehouse applications. Vision-based grasp algorithms, like Dex-Net, show promise but struggle to accurately perceive dark or reflective objects, sub-resolution features, and occlusions, resulting in suction cup grip failures. In our prior work, we designed the Smart Suction Cup, which estimates the flow state within the cup and provides a mechanically resilient end-effector that can inform arm feedback control through a sense of touch. We then demonstrated how this cup's signals enable haptically-driven search behaviors for better grasping points on adversarial objects. This prior work uses a model-based approach to predict the desired motion direction, which opens up the question: does a data-driven approach perform better? This technical report provides an initial analysis harnessing the data previously collected. Specifically, we compare the model-based method with a preliminary data-driven approach to accurately estimate lateral pose adjustment direction for improved grasp success.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.