Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum eigenvalue processing (2401.06240v2)

Published 11 Jan 2024 in quant-ph, cs.DS, cs.NA, math.NA, and physics.chem-ph

Abstract: Many problems in linear algebra -- such as those arising from non-Hermitian physics and differential equations -- can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices. However, the existing Quantum Singular Value Transformation (QSVT) framework is ill-suited to this task, as eigenvalues and singular values are different in general. We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary polynomial transformations on eigenvalues of block-encoded non-normal operators, and a related Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra. QEVT has query complexity to the block encoding nearly recovering that of the QSVT for a Hermitian input, and QEVE achieves the Heisenberg-limited scaling for diagonalizable input matrices. As applications, we develop a linear differential equation solver with strictly linear time query complexity for average-case diagonalizable operators, as well as a ground state preparation algorithm that upgrades previous nearly optimal results for Hermitian Hamiltonians to diagonalizable matrices with real spectra. Underpinning our algorithms is an efficient method to prepare a quantum superposition of Faber polynomials, which generalize the nearly-best uniform approximation properties of Chebyshev polynomials to the complex plane. Of independent interest, we also develop techniques to generate $n$ Fourier coefficients with $\mathbf{O}(\mathrm{polylog}(n))$ gates compared to prior approaches with linear cost.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com