Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

AdaMR: Adaptable Molecular Representation for Unified Pre-training Strategy (2401.06166v2)

Published 28 Dec 2023 in q-bio.BM, cs.AI, and cs.LG

Abstract: We propose Adjustable Molecular Representation (AdaMR), a new large-scale uniform pre-training strategy for small-molecule drugs, as a novel unified pre-training strategy. AdaMR utilizes a granularity-adjustable molecular encoding strategy, which is accomplished through a pre-training job termed molecular canonicalization, setting it apart from recent large-scale molecular models. This adaptability in granularity enriches the model's learning capability at multiple levels and improves its performance in multi-task scenarios. Specifically, the substructure-level molecular representation preserves information about specific atom groups or arrangements, influencing chemical properties and functionalities. This proves advantageous for tasks such as property prediction. Simultaneously, the atomic-level representation, combined with generative molecular canonicalization pre-training tasks, enhances validity, novelty, and uniqueness in generative tasks. All of these features work together to give AdaMR outstanding performance on a range of downstream tasks. We fine-tuned our proposed pre-trained model on six molecular property prediction tasks (MoleculeNet datasets) and two generative tasks (ZINC250K datasets), achieving state-of-the-art (SOTA) results on five out of eight tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: