Papers
Topics
Authors
Recent
2000 character limit reached

DFU: scale-robust diffusion model for zero-shot super-resolution image generation

Published 30 Nov 2023 in cs.CV and cs.LG | (2401.06144v2)

Abstract: Diffusion generative models have achieved remarkable success in generating images with a fixed resolution. However, existing models have limited ability to generalize to different resolutions when training data at those resolutions are not available. Leveraging techniques from operator learning, we present a novel deep-learning architecture, Dual-FNO UNet (DFU), which approximates the score operator by combining both spatial and spectral information at multiple resolutions. Comparisons of DFU to baselines demonstrate its scalability: 1) simultaneously training on multiple resolutions improves FID over training at any single fixed resolution; 2) DFU generalizes beyond its training resolutions, allowing for coherent, high-fidelity generation at higher-resolutions with the same model, i.e. zero-shot super-resolution image-generation; 3) we propose a fine-tuning strategy to further enhance the zero-shot super-resolution image-generation capability of our model, leading to a FID of 11.3 at 1.66 times the maximum training resolution on FFHQ, which no other method can come close to achieving.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 40 likes about this paper.