Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology-Driven Parallel Trajectory Optimization in Dynamic Environments (2401.06021v2)

Published 11 Jan 2024 in cs.RO

Abstract: Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal solutions and frequently switch between different local minima, leading to inefficient and unsafe robot motion. In this work, We propose a novel topology-driven trajectory optimization strategy for dynamic environments that plans multiple distinct evasive trajectories to enhance the robot's behavior and efficiency. A global planner iteratively generates trajectories in distinct homotopy classes. These trajectories are then optimized by local planners working in parallel. While each planner shares the same navigation objectives, they are locally constrained to a specific homotopy class, meaning each local planner attempts a different evasive maneuver. The robot then executes the feasible trajectory with the lowest cost in a receding horizon manner. We demonstrate, on a mobile robot navigating among pedestrians, that our approach leads to faster and safer trajectories than existing planners.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4459–4466, Oct. 2019.
  2. H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoidance for MAVs in Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 776–783, Apr. 2019.
  3. M. Everett, Y. F. Chen, and J. P. How, “Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning,” in IEEE Int. Conf. Intell. Robots Syst., Oct. 2018, pp. 3052–3059.
  4. M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street scenarios in a Frenét Frame,” in IEEE Int. Conf. Robot. Autom., May 2010, pp. 987–993.
  5. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, Jun. 2011.
  6. C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory planning and optimization in distinctive topologies,” Robot. Auton. Syst., vol. 88, pp. 142–153, Feb. 2017.
  7. J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler, C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb, “Making Bertha Drive—An Autonomous Journey on a Historic Route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20, 2014.
  8. F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder, A. Scheel, M. Stübler, M. Bach, P. Hatzelmann, C. Wild, and K. Dietmayer, “Autonomous driving at Ulm University: A modular, robust, and sensor-independent fusion approach,” in IEEE Intell. Veh. Symp., Jun. 2015, pp. 666–673, iSSN: 1931-0587.
  9. F. Altché and A. de La Fortelle, “Partitioning of the free space-time for on-road navigation of autonomous ground vehicles,” in IEEE Conf. Decis. Control., Dec. 2017, pp. 2126–2133.
  10. L. Ferranti, B. Brito, E. Pool, Y. Zheng, R. M. Ensing, R. Happee, B. Shyrokau, J. F. P. Kooij, J. Alonso-Mora, and D. M. Gavrila, “SafeVRU: A Research Platform for the Interaction of Self-Driving Vehicles with Vulnerable Road Users,” in IEEE Intelligent Vehicles, 2019, pp. 1660–1666.
  11. A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast Risk Assessment for Autonomous Vehicles Using Learned Models of Agent Futures,” in Robotics: Science and Systems, Jul. 2020.
  12. O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-Based Trajectory Optimization in Uncertain Dynamic Environments,” IEEE Robot. Autom. Lett., pp. 5389 – 5396, 2021.
  13. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-Based Motion Planning with Bounded Probability of Collision,” Jul. 2023, arXiv:2307.01070 [cs]. [Online]. Available: https://arxiv.org/pdf/2307.01070.pdf
  14. C. Pek and M. Althoff, “Fail-Safe Motion Planning for Online Verification of Autonomous Vehicles Using Convex Optimization,” IEEE Trans. Robot., vol. 37, no. 3, pp. 798–814, Jun. 2021.
  15. J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency Model Predictive Control for Automated Vehicles,” in IEEE Am. Control Conf., Philadelphia, PA, USA, Jul. 2019, pp. 717–722.
  16. V. K. Adajania, A. Sharma, A. Gupta, H. Masnavi, K. M. Krishna, and A. K. Singh, “Multi-Modal Model Predictive Control Through Batch Non-Holonomic Trajectory Optimization: Application to Highway Driving,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4220–4227, Apr. 2022.
  17. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Robot. Autom. Lett., vol. 12, no. 4, pp. 566–580, Aug. 1996.
  18. T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios,” in IEEE Intell. Transp. Syst. Conf., Oct. 2019, pp. 3149–3154.
  19. T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion Planning around Obstacles with Convex Optimization,” May 2022, arXiv:2205.04422 [cs]. [Online]. Available: http://arxiv.org/abs/2205.04422
  20. K. Zheng, “ROS Navigation Tuning Guide,” in Robot Operating System (ROS): The Complete Reference (Volume 6), ser. Studies in Computational Intelligence, A. Koubaa, Ed.   Springer International Publishing, 2021, pp. 197–226. [Online]. Available: https://doi.org/10.1007/978-3-030-75472-3_6
  21. F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy, “A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving,” IEEE Trans. Robot., vol. 38, no. 2, pp. 822–834, Apr. 2022.
  22. W. Ding, L. Zhang, J. Chen, and S. Shen, “EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments,” IEEE Trans. Robot., vol. 38, no. 2, pp. 1118–1138, Apr. 2022.
  23. J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-Based Divide-and-Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1101–1115, Oct. 2015.
  24. S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-based robot path planning,” Auton. Robots, vol. 33, no. 3, pp. 273–290, Oct. 2012.
  25. B. Yi, P. Bender, F. Bonarens, and C. Stiller, “Model Predictive Trajectory Planning for Automated Driving,” IEEE Trans. Intell. Veh., vol. 4, no. 1, pp. 24–38, Mar. 2019.
  26. O. De Groot, L. Ferranti, D. Gavrila, and J. Alonso–Mora, “Globally Guided Trajectory Planning in Dynamic Environments,” in IEEE Int. Conf. Robot. Autom., May 2023, pp. 10 118–10 124.
  27. B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological Paths,” in IEEE Int. Conf. Robot. Autom., May 2020, pp. 1208–1214.
  28. T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6, pp. 477–493, Jan. 2000.
  29. S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path planning with homotopy class constraints,” in AAAI Conference on Artificial Intelligence, Atlanta, Georgia, Jul. 2010, pp. 1230–1237.
  30. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, “GNU Scientific Library Reference Manual (3rd Ed.),” Aug. 2019.
  31. D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, May 1995.
  32. C. Gloor, “Pedsim: Pedestrian crowd simulation,” 2016. [Online]. Available: https://github.com/chgloor/pedsim
  33. C. Rösmann, “ROS Package teb_local_planner,” Nov. 2023. [Online]. Available: https://github.com/rst-tu-dortmund/teb_local_planner
  34. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Video topology-Driven Parallel Trajectory Optimization in Dynamic Environments,” Jan. 2024. [Online]. Available: https://www.youtube.com/watch?v=E6UI8EAab50
  35. C. I. Mavrogiannis and R. A. Knepper, “Multi-agent path topology in support of socially competent navigation planning,” Int. J. Robot. Res., vol. 38, no. 2-3, pp. 338–356, Mar. 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Oscar de Groot (6 papers)
  2. Laura Ferranti (20 papers)
  3. Javier Alonso-Mora (76 papers)
  4. Dariu M. Gavrila (15 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com