Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

YOIO: You Only Iterate Once by mining and fusing multiple necessary global information in the optical flow estimation (2401.05879v1)

Published 11 Jan 2024 in cs.CV

Abstract: Occlusions pose a significant challenge to optical flow algorithms that even rely on global evidences. We consider an occluded point to be one that is imaged in the reference frame but not in the next. Estimating the motion of these points is extremely difficult, particularly in the two-frame setting. Previous work only used the current frame as the only input, which could not guarantee providing correct global reference information for occluded points, and had problems such as long calculation time and poor accuracy in predicting optical flow at occluded points. To enable both high accuracy and efficiency, We fully mine and utilize the spatiotemporal information provided by the frame pair, design a loopback judgment algorithm to ensure that correct global reference information is obtained, mine multiple necessary global information, and design an efficient refinement module that fuses these global information. Specifically, we propose a YOIO framework, which consists of three main components: an initial flow estimator, a multiple global information extraction module, and a unified refinement module. We demonstrate that optical flow estimates in the occluded regions can be significantly improved in only one iteration without damaging the performance in non-occluded regions. Compared with GMA, the optical flow prediction accuracy of this method in the occluded area is improved by more than 10%, and the occ_out area exceeds 15%, while the calculation time is 27% shorter. This approach, running up to 18.9fps with 436*1024 image resolution, obtains new state-of-the-art results on the challenging Sintel dataset among all published and unpublished approaches that can run in real-time, suggesting a new paradigm for accurate and efficient optical flow estimation.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.