Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Meets Mechanism Design: Key Results and Some Novel Applications (2401.05683v1)

Published 11 Jan 2024 in cs.GT and cs.AI

Abstract: Mechanism design is essentially reverse engineering of games and involves inducing a game among strategic agents in a way that the induced game satisfies a set of desired properties in an equilibrium of the game. Desirable properties for a mechanism include incentive compatibility, individual rationality, welfare maximisation, revenue maximisation (or cost minimisation), fairness of allocation, etc. It is known from mechanism design theory that only certain strict subsets of these properties can be simultaneously satisfied exactly by any given mechanism. Often, the mechanisms required by real-world applications may need a subset of these properties that are theoretically impossible to be simultaneously satisfied. In such cases, a prominent recent approach is to use a deep learning based approach to learn a mechanism that approximately satisfies the required properties by minimizing a suitably defined loss function. In this paper, we present, from relevant literature, technical details of using a deep learning approach for mechanism design and provide an overview of key results in this topic. We demonstrate the power of this approach for three illustrative case studies: (a) efficient energy management in a vehicular network (b) resource allocation in a mobile network (c) designing a volume discount procurement auction for agricultural inputs. Section 6 concludes the paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. P. McAfee and J. McMillan, “Auctions and bidding,” Journal of Economic Literature, vol. 25, no. 2, pp. 699–738, 1987. [Online]. Available: http://www.jstor.org/stable/2726107
  2. A. Ghosh, P. McAfee, K. Papineni, and S. Vassilvitskii, “Bidding for representative allocations for display advertising,” WINE 2009 Lecture Notes in Computer Science, Springer Berlin, pp. 208–219, 2009.
  3. P. Klemperer, “Auction theory: A guide to the literature,” JOURNAL OF ECONOMIC SURVEYS, vol. 13, no. 3, 1999.
  4. R. B. Myerson, “Optimal auction design,” Mathematics of operations research, vol. 6, no. 1, pp. 58–73, 1981.
  5. J.-C. Rochet, “A necessary and sufficient condition for rationalizability in a quasi-linear context,” Journal of Mathematical Economics, vol. 16, no. 2, pp. 191–200, 1987. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0304406887900073
  6. P. Dütting, Z. Feng, H. Narasimhan, D. C. Parkes, and S. S. Ravindranath, “Optimal auctions through deep learning: Advances in differentiable economics,” J. ACM, nov 2023, just Accepted. [Online]. Available: https://doi.org/10.1145/3630749
  7. W. Shen, P. Tang, and S. Zuo, “Automated mechanism design via neural networks,” 2018. [Online]. Available: https://arxiv.org/abs/1805.03382
  8. R. A. Feldman and R. Mehra, “Auctions: Theory and applications,” Staff Papers (International Monetary Fund), vol. 40, no. 3, pp. 485–511, 1993. [Online]. Available: http://www.jstor.org/stable/3867445
  9. V. Conitzer and T. Sandholm, “Complexity of mechanism design,” CoRR, vol. abs/1408.1486, 2014. [Online]. Available: http://arxiv.org/abs/1408.1486
  10. A. Gibbard, “Manipulation of voting schemes: A general result,” Econometrica, vol. 41, no. 4, pp. 587–601, 1973. [Online]. Available: http://www.jstor.org/stable/1914083
  11. D. Mookherjee and M. Tsumagari, “Mechanism design with communication constraints,” Journal of Political Economy, vol. 122, no. 5, pp. 1094–1129, 2014. [Online]. Available: http://www.jstor.org/stable/10.1086/676931
  12. T. V. Zandt, “Communication complexity and mechanism design,” Journal of the European Economic Association, vol. 5, no. 2/3, pp. 543–553, 2007. [Online]. Available: https://www.jstor.org/stable/40005057
  13. Z. Zhang, “A survey of online auction mechanism design using deep learning approaches,” arXiv preprint arXiv:2110.06880, 2021.
  14. G. Zhou, C. Song, X. Zhu, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai, “Deep interest network for click-through rate prediction,” 2017. [Online]. Available: https://arxiv.org/abs/1706.06978
  15. N. Golowich, H. Narasimhan, and D. C. Parkes, “Deep learning for multi-facility location mechanism design.” in IJCAI, 2018, pp. 261–267.
  16. N. Peri, M. J. Curry, S. Dooley, and J. P. Dickerson, “Preferencenet: Encoding human preferences in auction design with deep learning,” 2021. [Online]. Available: https://arxiv.org/abs/2106.03215
  17. X. Liu, C. Yu, Z. Zhang, Z. Zheng, Y. Rong, H. Lv, D. Huo, Y. Wang, D. Chen, J. Xu, F. Wu, G. Chen, and X. Zhu, “Neural auction: End-to-end learning of auction mechanisms for e-commerce advertising,” 2021. [Online]. Available: https://arxiv.org/abs/2106.03593
  18. Z. Feng, H. Narasimhan, and D. C. Parkes, “Deep learning for revenue-optimal auctions with budgets,” in Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, 2018, pp. 354–362.
  19. M. J. Curry, U. Lyi, T. Goldstein, and J. P. Dickerson, “Learning revenue-maximizing auctions with differentiable matching,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2022, pp. 6062–6073.
  20. J. Rahme, “Learning algorithms for intelligent agents and mechanisms,” Ph.D. dissertation, Princeton University, 2022.
  21. J. Hartford, D. Graham, K. Leyton-Brown, and S. Ravanbakhsh, “Deep models of interactions across sets,” in International Conference on Machine Learning.   PMLR, 2018, pp. 1909–1918.
  22. Z. Duan, H. Sun, Y. Chen, and X. Deng, “A scalable neural network for dsic affine maximizer auction design,” arXiv preprint arXiv:2305.12162, 2023.
  23. N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for edge computing resource management in mobile blockchain networks: A deep learning approach,” CoRR, vol. abs/1711.02844, 2017. [Online]. Available: http://arxiv.org/abs/1711.02844
  24. ——, “Optimal auction for edge computing resource management in mobile blockchain networks: A deep learning approach,” in 2018 IEEE international conference on communications (ICC).   IEEE, 2018, pp. 1–6.
  25. J. Qian, K. Zhu, R. Wang, and Y. Zhao, “Optimal auction for resource allocation in wireless virtualization: A deep learning approach,” in 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 2019, pp. 535–538.
  26. A. Tacchetti, D. Strouse, M. Garnelo, T. Graepel, and Y. Bachrach, “A neural architecture for designing truthful and efficient auctions,” CoRR, vol. abs/1907.05181, 2019. [Online]. Available: http://arxiv.org/abs/1907.05181
  27. G. Brero, B. Lubin, and S. Seuken, “Machine learning-powered iterative combinatorial auctions,” CoRR, vol. abs/1911.08042, 2019. [Online]. Available: http://arxiv.org/abs/1911.08042
  28. J. Weissteiner and S. Seuken, “Deep learning—powered iterative combinatorial auctions,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 2284–2293.
  29. Y. Deng, N. Golrezaei, P. Jaillet, J. C. N. Liang, and V. Mirrokni, “Fairness in the autobidding world with machine-learned advice,” arXiv preprint arXiv:2209.04748, 2022.
  30. K. Kuo, A. Ostuni, E. Horishny, M. J. Curry, S. Dooley, P.-y. Chiang, T. Goldstein, and J. P. Dickerson, “Proportionnet: Balancing fairness and revenue for auction design with deep learning,” 2020. [Online]. Available: https://arxiv.org/abs/2010.06398
  31. S. Barman, G. Ghalme, S. Jain, P. Kulkarni, and S. Narang, “Fair division of indivisible goods among strategic agents,” CoRR, vol. abs/1901.09427, 2019. [Online]. Available: http://arxiv.org/abs/1901.09427
  32. B. Ahmad, “Design of fair auctions: A deep learning approach,” June 2021.
  33. D. Ivanov, I. Safiulin, I. Filippov, and K. Balabaeva, “Optimal-er auctions through attention,” Advances in Neural Information Processing Systems, vol. 35, pp. 34 734–34 747, 2022.
  34. C. Ilvento, M. Jagadeesan, and S. Chawla, “Multi-category fairness in sponsored search auctions,” in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 2020, pp. 348–358.
  35. S. Mishra, M. Padala, and S. Gujar, “Eef1-nn: Efficient and ef1 allocations through neural networks,” in Pacific Rim International Conference on Artificial Intelligence.   Springer, 2022, pp. 388–401.
  36. P. Manisha, C. Jawahar, and S. Gujar, “Learning optimal redistribution mechanisms through neural networks,” arXiv preprint arXiv:1801.08808, 2018.
  37. C. Nguyen, L. Chau, N. Anh, N. Sang, S. Feng, V.-D. Nguyen, D. Niyato, and D. I. Kim, “Optimal auction for effective energy management in uav-assisted vehicular metaverse synchronization systems,” IEEE Transactions on Vehicular Technology, pp. 1–16, 2023.
  38. M. Ratan Bhardwaj, B. Ahmed, P. Diwakar, G. Ghalme, and Y. Narahari, “Designing Fair, Cost-optimal Auctions based on Deep Learning for Procuring Agricultural Inputs through Farmer Collectives,” arXiv e-prints, p. arXiv:2304.07341, Apr. 2023.

Summary

We haven't generated a summary for this paper yet.