Emergent Mind

Abstract

Given an $n$-vertex $m$-edge digraph $G = (V,E)$ and a set $S \subseteq V$, $|S| = n{\sigma}$ (for some $0 < \sigma \le 1$) of designated sources, the $S \times V$-direachability problem is to compute for every $s \in S$, the set of all the vertices reachable from $s$ in $G$. Known naive algorithms for this problem either run a BFS/DFS separately from every source, and as a result require $O(m \cdot n{\sigma})$ time, or compute the transitive closure of $G$ in $\tilde O(n{\omega})$ time, where $\omega < 2.371552\ldots$ is the matrix multiplication exponent. Hence, the current state-of-the-art bound for the problem on graphs with $m = \Theta(n{\mu})$ edges in $\tilde O(n{\min {\mu + \sigma, \omega }})$. Our first contribution is an algorithm with running time $\tilde O(n{1 + \tiny{\frac{2}{3}} \omega(\sigma)})$ for this problem, where $\omega(\sigma)$ is the rectangular matrix multiplication exponent. Using current state-of-the-art estimates on $\omega(\sigma)$, our exponent is better than $\min {2 + \sigma, \omega }$ for $\tilde \sigma \le \sigma \le 0.53$, where $1/3 < \tilde \sigma < 0.3336$ is a universal constant. Our second contribution is a sequence of algorithms $\mathcal A0, \mathcal A1, \mathcal A2, \ldots$ for the $S \times V$-direachability problem. We argue that under a certain assumption that we introduce, for every $\tilde \sigma \le \sigma < 1$, there exists a sufficiently large index $k = k(\sigma)$ so that $\mathcal Ak$ improves upon the current state-of-the-art bounds for $S \times V$-direachability with $|S| = n{\sigma}$, in the densest regime $\mu =2$. We show that to prove this assumption, it is sufficient to devise an algorithm that computes a rectangular max-min matrix product roughly as efficiently as ordinary $(+, \cdot)$ matrix product. Our algorithms heavily exploit recent constructions of directed shortcuts by Kogan and Parter.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.