Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deterministic Near-Linear Time Minimum Cut in Weighted Graphs (2401.05627v1)

Published 11 Jan 2024 in cs.DS

Abstract: In 1996, Karger [Kar96] gave a startling randomized algorithm that finds a minimum-cut in a (weighted) graph in time $O(m\log3n)$ which he termed near-linear time meaning linear (in the size of the input) times a polylogarthmic factor. In this paper, we give the first deterministic algorithm which runs in near-linear time for weighted graphs. Previously, the breakthrough results of Kawarabayashi and Thorup [KT19] gave a near-linear time algorithm for simple graphs. The main technique here is a clustering procedure that perfectly preserves minimum cuts. Recently, Li [Li21] gave an $m{1+o(1)}$ deterministic minimum-cut algorithm for weighted graphs; this form of running time has been termed "almost-linear''. Li uses almost-linear time deterministic expander decompositions which do not perfectly preserve minimum cuts, but he can use these clusterings to, in a sense, "derandomize'' the methods of Karger. In terms of techniques, we provide a structural theorem that says there exists a sparse clustering that preserves minimum cuts in a weighted graph with $o(1)$ error. In addition, we construct it deterministically in near linear time. This was done exactly for simple graphs in [KT19, HRW20] and with polylogarithmic error for weighted graphs in [Li21]. Extending the techniques in [KT19, HRW20] to weighted graphs presents significant challenges, and moreover, the algorithm can only polylogarithmically approximately preserve minimum cuts. A remaining challenge is to reduce the polylogarithmic-approximate clusterings to $1+o(1/\log n)$-approximate so that they can be applied recursively as in [Li21] over $O(\log n)$ many levels. This is an additional challenge that requires building on properties of tree-packings in the presence of a wide range of edge weights to, for example, find sources for local flow computations which identify minimum cuts that cross clusters.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.