Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

POMP: Probability-driven Meta-graph Prompter for LLMs in Low-resource Unsupervised Neural Machine Translation (2401.05596v2)

Published 11 Jan 2024 in cs.CL and cs.AI

Abstract: Low-resource languages (LRLs) face challenges in supervised neural machine translation due to limited parallel data, prompting research into unsupervised methods. Unsupervised neural machine translation (UNMT) methods, including back-translation, transfer learning, and pivot-based translation, offer practical solutions for LRL translation, but they are hindered by issues like synthetic data noise, language bias, and error propagation, which can potentially be mitigated by LLMs. LLMs have advanced NMT with in-context learning (ICL) and supervised fine-tuning methods, but insufficient training data results in poor performance in LRLs. We argue that LLMs can mitigate the linguistic noise with auxiliary languages to improve translations in LRLs. In this paper, we propose Probability-driven Meta-graph Prompter (POMP), a novel approach employing a dynamic, sampling-based graph of multiple auxiliary languages to enhance LLMs' translation capabilities for LRLs. POMP involves constructing a directed acyclic meta-graph for each source language, from which we dynamically sample multiple paths to prompt LLMs to mitigate the linguistic noise and improve translations during training. We use the BLEURT metric to evaluate the translations and back-propagate rewards, estimated by scores, to update the probabilities of auxiliary languages in the paths. Our experiments show significant improvements in the translation quality of three LRLs, demonstrating the effectiveness of our approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets