Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

POMP: Probability-driven Meta-graph Prompter for LLMs in Low-resource Unsupervised Neural Machine Translation (2401.05596v2)

Published 11 Jan 2024 in cs.CL and cs.AI

Abstract: Low-resource languages (LRLs) face challenges in supervised neural machine translation due to limited parallel data, prompting research into unsupervised methods. Unsupervised neural machine translation (UNMT) methods, including back-translation, transfer learning, and pivot-based translation, offer practical solutions for LRL translation, but they are hindered by issues like synthetic data noise, language bias, and error propagation, which can potentially be mitigated by LLMs. LLMs have advanced NMT with in-context learning (ICL) and supervised fine-tuning methods, but insufficient training data results in poor performance in LRLs. We argue that LLMs can mitigate the linguistic noise with auxiliary languages to improve translations in LRLs. In this paper, we propose Probability-driven Meta-graph Prompter (POMP), a novel approach employing a dynamic, sampling-based graph of multiple auxiliary languages to enhance LLMs' translation capabilities for LRLs. POMP involves constructing a directed acyclic meta-graph for each source language, from which we dynamically sample multiple paths to prompt LLMs to mitigate the linguistic noise and improve translations during training. We use the BLEURT metric to evaluate the translations and back-propagate rewards, estimated by scores, to update the probabilities of auxiliary languages in the paths. Our experiments show significant improvements in the translation quality of three LRLs, demonstrating the effectiveness of our approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: