Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Characterising the take-off dynamics and energy efficiency in spring-driven jumping robots (2401.05554v1)

Published 10 Jan 2024 in cs.RO and physics.app-ph

Abstract: Previous design methodologies for spring-driven jumping robots focused on jump height optimization for specific tasks. In doing so, numerous designs have been proposed including using nonlinear spring-linkages to increase the elastic energy storage and jump height. However, these systems can never achieve their theoretical maximum jump height due to taking off before the spring energy is fully released, resulting in an incomplete transfer of stored elastic energy to gravitational potential energy. This paper presents low-order models aimed at characterising the energy conversion during the acceleration phase of jumping. It also proposes practical solutions for increasing the energy efficiency of jumping robots. A dynamic analysis is conducted on a multibody system comprised of rotational links, which is experimentally validated using a physical demonstrator. The analysis reveals that inefficient energy conversion is attributed to inertial effects caused by rotational and unsprung masses. Since these masses cannot be entirely eliminated from a physical linkage, a practical approach to improving energy efficiency involves structural redesign to reduce structural mass and moments of inertia while maintaining compliance with structural strength and stiffness requirements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. doi:10.1038/s41586-022-04606-3. URL https://www.nature.com/articles/s41586-022-04606-3
  2. doi:10.1126/science.aao1082. URL https://www.science.org/doi/abs/10.1126/science.aao1082
  3. doi:10.1242/jeb.052399. URL https://journals.biologists.com/jeb/article/214/5/836/33598/
  4. arXiv:https://journals.biologists.com/jeb/article-pdf/47/1/59/2630485/jexbio_47_1_59.pdf, doi:10.1242/jeb.47.1.59. URL https://doi.org/10.1242/jeb.47.1.59
  5. doi:10.1038/srep35219.
  6. arXiv:https://journals.biologists.com/jeb/article-pdf/215/19/3501/1912014/3501.pdf, doi:10.1242/jeb.071993. URL https://doi.org/10.1242/jeb.071993
  7. doi:10.1155/2017/4780160. URL https://www.hindawi.com/journals/abb/2017/4780160/
  8. doi:10.1016/j.robot.2019.103362. URL https://doi.org/10.1016/j.robot.2019.103362
  9. doi:10.1016/j.cois.2020.09.001. URL https://www.sciencedirect.com/science/article/pii/S2214574520301097
  10. doi:10.3390/app10238607. URL https://www.mdpi.com/2076-3417/10/23/8607
  11. doi:10.1109/AERO.1999.793156. URL https://ieeexplore.ieee.org/document/793156
  12. doi:10.1109/ROBOT.2000.844092. URL https://ieeexplore.ieee.org/document/844092
  13. arXiv:2311.02188, doi:10.48550/arXiv.2311.02188.
  14. doi:10.1109/ICA-SYMP50206.2021.9358244.
  15. doi:10.1109/ICRA.2016.7487668. URL https://ieeexplore.ieee.org/document/6481459
  16. doi:10.1109/ROBOT.2007.363827.
  17. doi:10.1109/ICRA.2013.6630552. URL https://ieeexplore.ieee.org/document/6630552
  18. doi:10.1108/01439910910950504. URL https://www.emerald.com/insight/content/doi/10.1108/01439910910950504/full/html
  19. doi:10.3390/APP9010013. URL https://www.mdpi.com/2076-3417/9/1/13
  20. doi:10.1177/0278364914541301.
  21. doi:10.1016/j.mechmachtheory.2020.103814. URL https://www.sciencedirect.com/science/article/abs/pii/S0094114X20300355
  22. doi:10.1109/IROS.2010.5648982.
  23. doi:10.1109/TCE.2009.5373766.
  24. doi:10.3390/machines10020126. URL https://www.mdpi.com/2075-1702/10/2/126
  25. doi:10.3390/app11083362. URL https://www.mdpi.com/2076-3417/11/8/3362
  26. doi:https://doi.org/10.1016/j.mechmachtheory.2022.104747. URL https://www.sciencedirect.com/science/article/pii/S0094114X22000246
  27. doi:10.1088/1748-3190/aafff5. URL https://iopscience.iop.org/article/10.1088/1748-3190/aafff5
  28. doi:10.1109/TMECH.2019.2907743. URL https://ieeexplore.ieee.org/document/8675459
  29. doi:10.1109/TRO.2013.2249371. URL https://ieeexplore.ieee.org/document/6481459
  30. doi:10.1088/1748-3190/10/6/066012. URL https://iopscience.iop.org/article/10.1088/1748-3190/10/6/066012
  31. doi:10.1088/1748-3182/2/3/S01. URL https://iopscience.iop.org/article/10.1088/1748-3182/2/3/S01
  32. doi:10.3390/app11115167. URL https://www.mdpi.com/2076-3417/11/11/5167
  33. doi:10.1109/ACCESS.2018.2859840. URL https://ieeexplore.ieee.org/document/8419761
  34. doi:10.1098/rsos.181544. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsos.181544
  35. doi:10.1109/TAC.1979.1102148.
  36. doi:10.1109/ROBOT.2008.4543236. URL https://ieeexplore.ieee.org/document/4543236

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube