Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Diversity-aware clustering: Computational Complexity and Approximation Algorithms (2401.05502v3)

Published 10 Jan 2024 in cs.DS, cs.AI, cs.CC, and cs.LG

Abstract: In this work, we study diversity-aware clustering problems where the data points are associated with multiple attributes resulting in intersecting groups. A clustering solution needs to ensure that the number of chosen cluster centers from each group should be within the range defined by a lower and upper bound threshold for each group, while simultaneously minimizing the clustering objective, which can be either $k$-median, $k$-means or $k$-supplier. We study the computational complexity of the proposed problems, offering insights into their NP-hardness, polynomial-time inapproximability, and fixed-parameter intractability. We present parameterized approximation algorithms with approximation ratios $1+ \frac{2}{e} + \epsilon \approx 1.736$, $1+\frac{8}{e} + \epsilon \approx 3.943$, and $5$ for diversity-aware $k$-median, diversity-aware $k$-means and diversity-aware $k$-supplier, respectively. Assuming Gap-ETH, the approximation ratios are tight for the diversity-aware $k$-median and diversity-aware $k$-means problems. Our results imply the same approximation factors for their respective fair variants with disjoint groups -- fair $k$-median, fair $k$-means, and fair $k$-supplier -- with lower bound requirements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Healey, J.F., Stepnick, A.: Diversity and Society: Race, Ethnicity, and Gender. Sage Publications, London, UK (2019) Shore et al. [2018] Shore, L.M., Cleveland, J.N., Sanchez, D.: Inclusive workplaces: A review and model. Human Resource Management Review 28(2), 176–189 (2018) Zinn and Dill [1996] Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Shore, L.M., Cleveland, J.N., Sanchez, D.: Inclusive workplaces: A review and model. Human Resource Management Review 28(2), 176–189 (2018) Zinn and Dill [1996] Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  2. Shore, L.M., Cleveland, J.N., Sanchez, D.: Inclusive workplaces: A review and model. Human Resource Management Review 28(2), 176–189 (2018) Zinn and Dill [1996] Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  3. Zinn, M.B., Dill, B.T.: Theorizing difference from multiracial feminism. Feminist Studies 22(2), 321–331 (1996) Crenshaw [2013] Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  4. Crenshaw, K.: Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics, 23–51 (2013) Runyan [2018] Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  5. Runyan, A.S.: What is intersectionality and why is it important? Academe 104(6), 10–14 (2018) Fish [1993] Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  6. Fish, S.: Reverse racism, or how the pot got to call the kettle black. Atlantic Monthly 272(5), 128–136 (1993) Kearns et al. [2019] Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  7. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: FAccT, pp. 100–109 (2019) Kasy and Abebe [2021] Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  8. Kasy, M., Abebe, R.: Fairness, equality, and power in algorithmic decision-making. In: FAccT, pp. 576–586 (2021) Ghosh et al. [2021] Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  9. Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, pp. 22–34 (2021). PMLR Hoffmann [2019] Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  10. Hoffmann, A.L.: Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Information, Communication & Society 22(7), 900–915 (2019) Kong [2022] Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  11. Kong, Y.: Are “Intersectionally Fair” AI Algorithms Really Fair to Women of Color? A Philosophical Analysis. In: FAccT, pp. 485–494 (2022). ACM Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986) Guha and Khuller [1998] Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  12. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: SODA, pp. 649–657. SIAM, USA (1998) Cohen-Addad et al. [2019] Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  13. Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight fpt approximations for k𝑘kitalic_k-median and k𝑘kitalic_k-means. In: ICALP (2019). Dagstuhl Fomin et al. [2022] Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  14. Fomin, F.V., Golovach, P.A., Inamdar, T., Purohit, N., Saurabh, S.: Exact Exponential Algorithms for Clustering Problems. In: IPEC. LIPIcs, vol. 249, pp. 13–11314. Dagstuhl, Dagstuhl, Germany (2022) Charikar et al. [1999] Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  15. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem (extended abstract). In: STOC, pp. 1–10. ACM, New York, USA (1999) Arya et al. [2001] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  16. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k𝑘kitalic_k-median and facility location problems. In: STOC, pp. 21–29 (2001) Li [2016] Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  17. Li, S.: Approximating capacitated k𝑘kitalic_k-median with (1+ϵ)⁢k1italic-ϵ𝑘(1+\epsilon)k( 1 + italic_ϵ ) italic_k open facilities. In: SODA, pp. 786–796 (2016). SIAM Goyal and Jaiswal [2023] Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  18. Goyal, D., Jaiswal, R.: Tight fpt approximation for socially fair clustering. Information Processing Letters 182, 106383 (2023) Hajiaghayi et al. [2012] Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  19. Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63, 795–814 (2012) Kleindessner et al. [2019] Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  20. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k𝑘kitalic_k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019). PMLR Ghadiri et al. [2021] Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  21. Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k𝑘kitalic_k-means clustering. In: FAccT, pp. 438–448 (2021) Chen et al. [2016] Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  22. Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016) Krishnaswamy et al. [2011] Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  23. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA (2011) Thejaswi et al. [2021] Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  24. Thejaswi, S., Ordozgoiti, B., Gionis, A.: Diversity-aware k𝑘kitalic_k-median: clustering with fair-center representation. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 765–780 (2021). Springer Thejaswi et al. [2022] Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  25. Thejaswi, S., Gadekar, A., Ordozgoiti, B., Osadnik, M.: Clustering with fair-center representation: parameterized approximation algorithms and heuristics. In: SIG-KDD, pp. 1749–1759 (2022) Charikar et al. [2002] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  26. Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algorithm for the k𝑘kitalic_k-median problem. JCSS 65(1), 129–149 (2002) Arya et al. [2004] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  27. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k𝑘kitalic_k-median and facility location problems. SIAM Journal on computing 33(3), 544–562 (2004) Cohen-Addad et al. [2022] Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  28. Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k𝑘kitalic_k-median. In: SODA, pp. 1556–1612 (2022). SIAM Byrka et al. [2014] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  29. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k𝑘kitalic_k-median, and positive correlation in budgeted optimization. In: SODA, pp. 737–756 (2014). SIAM Kanungo et al. [2004] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  30. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k𝑘kitalic_k-means clustering. Computational Geometry 28(2-3), 89–112 (2004) Ahmadian et al. [2019] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  31. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k𝑘kitalic_k-means and euclidean k𝑘kitalic_k-median by primal-dual algorithms. SIAM Journal on Computing 49(4), 17–97 (2019) Gonzalez [1985] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  32. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical computer science 38, 293–306 (1985) Hsu and Nemhauser [1979] Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  33. Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979) Feldmann and Marx [2020] Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  34. Feldmann, A.E., Marx, D.: The parameterized hardness of the k𝑘kitalic_k-center problem in transportation networks. Algorithmica 82, 1989–2005 (2020) Chierichetti et al. [2017] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  35. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Advances in neural information processing systems 30 (2017) Chen et al. [2019] Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  36. Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: ICML, pp. 1032–1041 (2019). PMLR Ahmadian et al. [2020] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  37. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: ATSTATS, pp. 4195–4205 (2020). PMLR Bandyapadhyay et al. [2019] Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  38. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k𝑘kitalic_k-center. In: ESA, vol. 144, pp. 12–11214. Dagstuhl, Dagstuhl, Germany (2019) Abbasi et al. [2021] Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  39. Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: FAccT, pp. 504–514 (2021) Chhabra et al. [2021] Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  40. Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021) Brubach et al. [2022] Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  41. Brubach, B., Chakrabarty, D., Dickerson, J.P., Seyed Esmaeili, M.K., Knittel, M., Morgenstern, J., Samadi, S., Srinivasan, A., Tsepenekas, L.: Fairness in clustering. https://www.fairclustering.com/ (2022) Krishnaswamy et al. [2018] Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  42. Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k𝑘kitalic_k-median and k𝑘kitalic_k-means with outliers via iterative rounding. In: STOC, pp. 646–659 (2018) Jones et al. [2020] Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  43. Jones, M., Nguyen, H., Nguyen, T.: Fair k𝑘kitalic_k-centers via maximum matching. In: ICML, pp. 4940–4949 (2020). PMLR Chen et al. [2024] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  44. Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science 983, 114305 (2024) Hébert-Johnson et al. [2018] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  45. Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (computationally-identifiable) masses. In: ICML, pp. 1939–1948 (2018). PMLR Kim et al. [2018] Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  46. Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. Advances in neural information processing systems 31 (2018) Gopalan et al. [2022] Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  47. Gopalan, P., Kim, M.P., Singhal, M.A., Zhao, S.: Low-degree multicalibration. In: Conference on Learning Theory, pp. 3193–3234 (2022). PMLR Garey and Johnson [2002] Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  48. Garey, M.R., Johnson, D.S.: Computers and Intractability vol. 29. W. H. Freeman and Co., USA (2002) Bartal [1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  49. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996). IEEE Downey and Fellows [2013] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  50. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity vol. 4. Springer, New York, USA (2013) Impagliazzo and Paturi [2001] Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  51. Impagliazzo, R., Paturi, R.: On the complexity of k𝑘kitalic_k-sat. JCSS 62(2), 367–375 (2001) S. et al. [2019] S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  52. S., K.C., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. Journal of ACM 66(5) (2019) Zhao et al. [2023] Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  53. Zhao, A., Zhou, Y., Liu, Q.: Improved approximation algorithms for matroid and knapsack means problems. International Journal of Foundations of Computer Science, 1–21 (2023) Chen et al. [2023] Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  54. Chen, X., Ji, S., Wu, C., Xu, Y., Yang, Y.: An approximation algorithm for diversity-aware fair k𝑘kitalic_k-supplier problem. Theoretical Computer Science, 114305 (2023) Cohen-Addad et al. [2021] Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  55. Cohen-Addad, V., Saulpic, D., Schwiegelshohn, C.: A new coreset framework for clustering. In: Proceedings of the ACM SIGACT Symposium on Theory of Computing, pp. 169–182 (2021) Feldman and Langberg [2011] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  56. Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: STOC, pp. 569–578. ACM, New York, USA (2011) Manurangsi [2020] Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  57. Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k𝑘kitalic_k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: SODA, pp. 62–81. SIAM, USA (2020) Calinescu et al. [2011] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  58. Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40(6), 1740–1766 (2011) Chen et al. [2022] Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  59. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-cost flow in almost-linear time. In: FOCS, pp. 612–623 (2022) Hochbaum and Shmoys [1986] Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  60. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of ACM 33(3), 533–550 (1986) Cygan et al. [2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015) Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
  61. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, ??? (2015)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com