Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Collaborative Learning with Artificial Intelligence Speakers (CLAIS): Pre-Service Elementary Science Teachers' Responses to the Prototype (2401.05400v1)

Published 20 Dec 2023 in cs.CY and cs.AI

Abstract: This research aims to demonstrate that AI can function not only as a tool for learning, but also as an intelligent agent with which humans can engage in collaborative learning (CL) to change epistemic practices in science classrooms. We adopted a design and development research approach, following the Analysis, Design, Development, Implementation and Evaluation (ADDIE) model, to prototype a tangible instructional system called Collaborative Learning with AI Speakers (CLAIS). The CLAIS system is designed to have 3-4 human learners join an AI speaker to form a small group, where humans and AI are considered as peers participating in the Jigsaw learning process. The development was carried out using the NUGU AI speaker platform. The CLAIS system was successfully implemented in a Science Education course session with 15 pre-service elementary science teachers. The participants evaluated the CLAIS system through mixed methods surveys as teachers, learners, peers, and users. Quantitative data showed that the participants' Intelligent-Technological, Pedagogical, And Content Knowledge was significantly increased after the CLAIS session, the perception of the CLAIS learning experience was positive, the peer assessment on AI speakers and human peers was different, and the user experience was ambivalent. Qualitative data showed that the participants anticipated future changes in the epistemic process in science classrooms, while acknowledging technical issues such as speech recognition performance and response latency. This study highlights the potential of Human-AI Collaboration for knowledge co-construction in authentic classroom settings and exemplify how AI could shape the future landscape of epistemic practices in the classroom.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.