Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dataset Optimization for Chronic Disease Prediction with Bio-Inspired Feature Selection (2401.05380v1)

Published 17 Dec 2023 in cs.NE and cs.LG

Abstract: In this study, we investigated the application of bio-inspired optimization algorithms, including Genetic Algorithm, Particle Swarm Optimization, and Whale Optimization Algorithm, for feature selection in chronic disease prediction. The primary goal was to enhance the predictive accuracy of models streamline data dimensionality, and make predictions more interpretable and actionable. The research encompassed a comparative analysis of the three bio-inspired feature selection approaches across diverse chronic diseases, including diabetes, cancer, kidney, and cardiovascular diseases. Performance metrics such as accuracy, precision, recall, and f1 score are used to assess the effectiveness of the algorithms in reducing the number of features needed for accurate classification. The results in general demonstrate that the bio-inspired optimization algorithms are effective in reducing the number of features required for accurate classification. However, there have been variations in the performance of the algorithms on different datasets. The study highlights the importance of data pre-processing and cleaning in ensuring the reliability and effectiveness of the analysis. This study contributes to the advancement of predictive analytics in the realm of chronic diseases. The potential impact of this work extends to early intervention, precision medicine, and improved patient outcomes, providing new avenues for the delivery of healthcare services tailored to individual needs. The findings underscore the potential benefits of using bio-inspired optimization algorithms for feature selection in chronic disease prediction, offering valuable insights for improving healthcare outcomes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.