Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Information Flow Rate for Cross-Correlated Stochastic Processes (2401.04950v1)

Published 10 Jan 2024 in physics.data-an, cs.AI, cs.IT, and math.IT

Abstract: Causal inference seeks to identify cause-and-effect interactions in coupled systems. A recently proposed method by Liang detects causal relations by quantifying the direction and magnitude of information flow between time series. The theoretical formulation of information flow for stochastic dynamical systems provides a general expression and a data-driven statistic for the rate of entropy transfer between different system units. To advance understanding of information flow rate in terms of intuitive concepts and physically meaningful parameters, we investigate statistical properties of the data-driven information flow rate between coupled stochastic processes. We derive relations between the expectation of the information flow rate statistic and properties of the auto- and cross-correlation functions. Thus, we elucidate the dependence of the information flow rate on the analytical properties and characteristic times of the correlation functions. Our analysis provides insight into the influence of the sampling step, the strength of cross-correlations, and the temporal delay of correlations on information flow rate. We support the theoretical results with numerical simulations of correlated Gaussian processes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.