Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Deep Fourier Residual method via overlapping domain decomposition (2401.04663v2)

Published 9 Jan 2024 in math.NA and cs.NA

Abstract: The Deep Fourier Residual (DFR) method is a specific type of variational physics-informed neural networks (VPINNs). It provides a robust neural network-based solution to partial differential equations (PDEs). The DFR strategy is based on approximating the dual norm of the weak residual of a PDE. This is equivalent to minimizing the energy norm of the error. To compute the dual of the weak residual norm, the DFR method employs an orthonormal spectral basis of the test space, which is known for rectangles or cuboids for multiple function spaces. In this work, we extend the DFR method with ideas of traditional domain decomposition (DD). This enables two improvements: (a) to solve problems in more general polygonal domains, and (b) to develop an adaptive refinement technique in the test space using a Dofler marking algorithm. In the former case, we show that under non-restrictive assumptions we retain the desirable equivalence between the employed loss function and the H1-error, numerically demonstrating adherence to explicit bounds in the case of the L-shaped domain problem. In the latter, we show how refinement strategies lead to potentially significant improvements against a reference, classical DFR implementation with a test function space of significantly lower dimensionality, allowing us to better approximate singular solutions at a more reasonable computational cost.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.