Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks (2401.04647v2)

Published 9 Jan 2024 in cs.CV, cs.AI, and cs.LG

Abstract: This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks. Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training. During training, the explanation module is optimized to extract visual concepts from the classifier's latent representations, while the GAN-based module aims to discriminate images generated from concepts, from true images. This joint training scheme enables the model to implicitly align its internally learned concepts with human-interpretable visual properties. Comprehensive experiments demonstrate the robustness of our approach, while producing coherent concept activations. We analyse the learned concepts, showing their semantic concordance with object parts and visual attributes. We also study how perturbations in the adversarial training protocol impact both classification and concept acquisition. In summary, this work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations - a key enabler for developing trustworthy AI for real-world perception tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.