Approximation Algorithms for Minimizing Congestion in Demand-Aware Networks (2401.04638v1)
Abstract: Emerging reconfigurable optical communication technologies allow to enhance datacenter topologies with demand-aware links optimized towards traffic patterns. This paper studies the algorithmic problem of jointly optimizing topology and routing in such demand-aware networks to minimize congestion, along two dimensions: (1) splittable or unsplittable flows, and (2) whether routing is segregated, i.e., whether routes can or cannot combine both demand-aware and demand-oblivious (static) links. For splittable and segregated routing, we show that the problem is generally $2$-approximable, but APX-hard even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated routing, we establish upper and lower bounds of $O\left(\log m/ \log\log m \right)$ and $\Omega\left(\log m/ \log\log m \right)$, respectively, for polynomial-time approximation algorithms, where $m$ is the number of static links. We further reveal that under un-/splittable and non-segregated routing, even for demands of a single source (resp., destination), the problem cannot be approximated better than $\Omega\left(\frac{c_{\max}}{c_{\min}} \right)$ unless P=NP, where $c_{\max}$ (resp., $c_{\min}$) denotes the maximum (resp., minimum) capacity. It remains NP-hard for uniform capacities, but is tractable for a single commodity and uniform capacities. Our trace-driven simulations show a significant reduction in network congestion compared to existing solutions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.