Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Advancing bioinformatics with large language models: components, applications and perspectives (2401.04155v2)

Published 8 Jan 2024 in q-bio.QM and cs.CL

Abstract: LLMs are a class of artificial intelligence models based on deep learning, which have great performance in various tasks, especially in NLP. LLMs typically consist of artificial neural networks with numerous parameters, trained on large amounts of unlabeled input using self-supervised or semi-supervised learning. However, their potential for solving bioinformatics problems may even exceed their proficiency in modeling human language. In this review, we will provide a comprehensive overview of the essential components of LLMs in bioinformatics, spanning genomics, transcriptomics, proteomics, drug discovery, and single-cell analysis. Key aspects covered include tokenization methods for diverse data types, the architecture of transformer models, the core attention mechanism, and the pre-training processes underlying these models. Additionally, we will introduce currently available foundation models and highlight their downstream applications across various bioinformatics domains. Finally, drawing from our experience, we will offer practical guidance for both LLM users and developers, emphasizing strategies to optimize their use and foster further innovation in the field.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: