Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A non-asymptotic distributional theory of approximate message passing for sparse and robust regression (2401.03923v1)

Published 8 Jan 2024 in math.ST, cs.IT, cs.LG, eess.SP, math.IT, stat.ML, and stat.TH

Abstract: Characterizing the distribution of high-dimensional statistical estimators is a challenging task, due to the breakdown of classical asymptotic theory in high dimension. This paper makes progress towards this by developing non-asymptotic distributional characterizations for approximate message passing (AMP) -- a family of iterative algorithms that prove effective as both fast estimators and powerful theoretical machinery -- for both sparse and robust regression. Prior AMP theory, which focused on high-dimensional asymptotics for the most part, failed to describe the behavior of AMP when the number of iterations exceeds $o\big({\log n}/{\log \log n}\big)$ (with $n$ the sample size). We establish the first finite-sample non-asymptotic distributional theory of AMP for both sparse and robust regression that accommodates a polynomial number of iterations. Our results derive approximate accuracy of Gaussian approximation of the AMP iterates, which improves upon all prior results and implies enhanced distributional characterizations for both optimally tuned Lasso and robust M-estimator.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)