Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finite-Time Decoupled Convergence in Nonlinear Two-Time-Scale Stochastic Approximation (2401.03893v3)

Published 8 Jan 2024 in math.OC and stat.ML

Abstract: In two-time-scale stochastic approximation (SA), two iterates are updated at varying speeds using different step sizes, with each update influencing the other. Previous studies on linear two-time-scale SA have shown that the convergence rates of the mean-square errors for these updates depend solely on their respective step sizes, a phenomenon termed decoupled convergence. However, achieving decoupled convergence in nonlinear SA remains less understood. Our research investigates the potential for finite-time decoupled convergence in nonlinear two-time-scale SA. We demonstrate that, under a nested local linearity assumption, finite-time decoupled convergence rates can be achieved with suitable step size selection. To derive this result, we conduct a convergence analysis of the matrix cross term between the iterates and leverage fourth-order moment convergence rates to control the higher-order error terms induced by local linearity. Additionally, a numerical example is provided to explore the possible necessity of local linearity for decoupled convergence.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: