Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Corn Yield Prediction Model with Deep Neural Networks for Smallholder Farmer Decision Support System (2401.03768v4)

Published 8 Jan 2024 in cs.LG, cs.AI, cs.CY, and cs.HC

Abstract: Crop yield prediction has been modeled on the assumption that there is no interaction between weather and soil variables. However, this paper argues that an interaction exists, and it can be finely modelled using the Kendall Correlation coefficient. Given the nonlinearity of the interaction between weather and soil variables, a deep neural network regressor (DNNR) is carefully designed with consideration to the depth, number of neurons of the hidden layers, and the hyperparameters with their optimizations. Additionally, a new metric, the average of absolute root squared error (ARSE) is proposed to combine the strengths of root mean square error (RMSE) and mean absolute error (MAE). With the ARSE metric, the proposed DNNR(s), optimised random forest regressor (RFR) and the extreme gradient boosting regressor (XGBR) achieved impressively small yield errors, 0.0172 t/ha, and 0.0243 t/ha, 0.0001 t/ha, and 0.001 t/ha, respectively. However, the DNNR(s), with changes to the explanatory variables to ensure generalizability to unforeseen data, DNNR(s) performed best. Further analysis reveals that a strong interaction does exist between weather and soil variables. Precisely, yield is observed to increase when precipitation is reduced and silt increased, and vice-versa. However, the degree of decrease or increase is not quantified in this paper. Contrary to existing yield models targeted towards agricultural policies and global food security, the goal of the proposed corn yield model is to empower the smallholder farmer to farm smartly and intelligently, thus the prediction model is integrated into a mobile application that includes education, and a farmer-to-market access module.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.