Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mixed Precision FGMRES-Based Iterative Refinement for Weighted Least Squares (2401.03755v2)

Published 8 Jan 2024 in math.NA and cs.NA

Abstract: With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of least squares (LS) problems $\min_x|b-Ax|_2$, where $A \in \mathbb{R}{m\times n}$, arise in numerous application areas. Overdetermined standard least squares problems can be solved by using mixed precision within the iterative refinement method of Bj\"{o}rck, which transforms the least squares problem into an $(m+n)\times(m+n)$ ''augmented'' system. It has recently been shown that mixed precision GMRES-based iterative refinement can also be used, in an approach termed GMRES-LSIR. In practice, we often encounter types of least squares problems beyond standard least squares, including weighted least squares (WLS), $\min_x|D{1/2}(b-Ax)|_2$, where $D{1/2}$ is a diagonal matrix of weights. In this paper, we discuss a mixed precision FGMRES-WLSIR algorithm for solving WLS problems using two different preconditioners.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)