Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Automated Code Vulnerability Repair using Large Language Models (2401.03741v2)

Published 8 Jan 2024 in cs.SE and cs.CL

Abstract: This research addresses the complex challenge of automated repair of code vulnerabilities, vital for enhancing digital security in an increasingly technology-driven world. The study introduces a novel and efficient format for the representation of code modification, using advanced LLMs such as Code Llama and Mistral. These models, fine-tuned on datasets featuring C code vulnerabilities, significantly improve the accuracy and adaptability of automated code repair techniques. A key finding is the enhanced repair accuracy of these models when compared to previous methods such as VulRepair, which underscores their practical utility and efficiency. The research also offers a critical assessment of current evaluation metrics, such as perfect predictions, and their limitations in reflecting the true capabilities of automated repair models in real-world scenarios. Following this, it underscores the importance of using test datasets devoid of train samples, emphasizing the need for dataset integrity to enhance the effectiveness of LLMs in code repair tasks. The significance of this work is its contribution to digital security, setting new standards for automated code vulnerability repair and paving the way for future advancements in the fields of cybersecurity and artificial intelligence. The study does not only highlight the potential of LLMs in enhancing code security but also fosters further exploration and research in these crucial areas.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.