Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT (2401.03302v4)
Abstract: Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
- D. N. Louis, A. Perry, G. Reifenberger, A. Von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 world health organization classification of tumors of the central nervous system: a summary,” Acta neuropathologica, vol. 131, pp. 803–820, 2016.
- G. S. Tandel, M. Biswas, O. G. Kakde, A. Tiwari, H. S. Suri, M. Turk, J. R. Laird, C. K. Asare, A. A. Ankrah, N. Khanna et al., “A review on a deep learning perspective in brain cancer classification,” Cancers, vol. 11, no. 1, p. 111, 2019.
- A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms,” biocybernetics and biomedical engineering, vol. 39, no. 1, pp. 63–74, 2019.
- R. Augustine, A. Al Mamun, A. Hasan, S. A. Salam, R. Chandrasekaran, R. Ahmed, and A. S. Thakor, “Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis,” Advances in Colloid and Interface Science, vol. 294, p. 102457, 2021.
- K. Popuri, D. Cobzas, A. Murtha, and M. Jägersand, “3d variational brain tumor segmentation using dirichlet priors on a clustered feature set,” International journal of computer assisted radiology and surgery, vol. 7, pp. 493–506, 2012.
- “Brain Tumors and Brain Cancer,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor
- J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers,” Sensors, vol. 21, no. 6, p. 2222, 2021.
- K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- “Brain Tumor - Statistics,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://www.cancer.net/cancer-types/brain-tumor/statistics
- H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in International conference on machine learning. PMLR, 2021, pp. 10 347–10 357.
- M. Devi, S. Maheswaran et al., “An efficient method for brain tumor detection using texture features and svm classifier in mr images,” Asian Pacific journal of cancer prevention: APJCP, vol. 19, no. 10, p. 2789, 2018.
- E. I. Zacharaki, S. Wang, S. Chawla, D. Soo Yoo, R. Wolf, E. R. Melhem, and C. Davatzikos, “Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 62, no. 6, pp. 1609–1618, 2009.
- S. Shrot, M. Salhov, N. Dvorski, E. Konen, A. Averbuch, and C. Hoffmann, “Application of mr morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme,” Neuroradiology, vol. 61, pp. 757–765, 2019.
- S. Deepak and P. Ameer, “Retrieval of brain mri with tumor using contrastive loss based similarity on googlenet encodings,” Computers in biology and medicine, vol. 125, p. 103993, 2020.
- Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, and J. Lu, “Brain tumor classification for mr images using transfer learning and fine-tuning,” Computerized Medical Imaging and Graphics, vol. 75, pp. 34–46, 2019.
- Y. Zhuge, H. Ning, P. Mathen, J. Y. Cheng, A. V. Krauze, K. Camphausen, and R. W. Miller, “Automated glioma grading on conventional mri images using deep convolutional neural networks,” Medical physics, vol. 47, no. 7, pp. 3044–3053, 2020.
- R. Pomponio, G. Erus, M. Habes, J. Doshi, D. Srinivasan, E. Mamourian, V. Bashyam, I. M. Nasrallah, T. D. Satterthwaite, Y. Fan et al., “Harmonization of large mri datasets for the analysis of brain imaging patterns throughout the lifespan,” NeuroImage, vol. 208, p. 116450, 2020.
- M. A. Naser and M. J. Deen, “Brain tumor segmentation and grading of lower-grade glioma using deep learning in mri images,” Computers in biology and medicine, vol. 121, p. 103758, 2020.
- Ö. Polat and C. Güngen, “Classification of brain tumors from mr images using deep transfer learning,” The Journal of Supercomputing, vol. 77, no. 7, pp. 7236–7252, 2021.
- H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain tumor classification in mri image using convolutional neural network,” Mathematical Biosciences and Engineering, 2021.
- M. M. Badža and M. Č. Barjaktarović, “Classification of brain tumors from mri images using a convolutional neural network,” Applied Sciences, vol. 10, no. 6, p. 1999, 2020.
- E. U. Haq, H. Jianjun, K. Li, H. U. Haq, and T. Zhang, “An mri-based deep learning approach for efficient classification of brain tumors,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–22, 2021.
- A. Sekhar, S. Biswas, R. Hazra, A. K. Sunaniya, A. Mukherjee, and L. Yang, “Brain tumor classification using fine-tuned googlenet features and machine learning algorithms: Iomt enabled cad system,” IEEE journal of biomedical and health informatics, vol. 26, no. 3, pp. 983–991, 2021.
- N. S. Shaik and T. K. Cherukuri, “Multi-level attention network: application to brain tumor classification,” Signal, Image and Video Processing, vol. 16, no. 3, pp. 817–824, 2022.
- M. F. Alanazi, M. U. Ali, S. J. Hussain, A. Zafar, M. Mohatram, M. Irfan, R. AlRuwaili, M. Alruwaili, N. H. Ali, and A. M. Albarrak, “Brain tumor/mass classification framework using magnetic-resonance-imaging-based isolated and developed transfer deep-learning model,” Sensors, vol. 22, no. 1, p. 372, 2022.
- B. Ahmad, J. Sun, Q. You, V. Palade, and Z. Mao, “Brain tumor classification using a combination of variational autoencoders and generative adversarial networks,” Biomedicines, vol. 10, no. 2, p. 223, 2022.
- M. I. Sharif, M. A. Khan, M. Alhussein, K. Aurangzeb, and M. Raza, “A decision support system for multimodal brain tumor classification using deep learning,” Complex & Intelligent Systems, pp. 1–14, 2021.
- A. A. Asiri, A. Shaf, T. Ali, U. Shakeel, M. Irfan, K. M. Mehdar, H. T. Halawani, A. H. Alghamdi, A. F. A. Alshamrani, and S. M. Alqhtani, “Exploring the power of deep learning: Fine-tuned vision transformer for accurate and efficient brain tumor detection in mri scans,” Diagnostics, vol. 13, no. 12, p. 2094, 2023.
- S. Tummala, S. Kadry, S. A. C. Bukhari, and H. T. Rauf, “Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling,” Current Oncology, vol. 29, no. 10, pp. 7498–7511, 2022.
- A. B. Abdusalomov, M. Mukhiddinov, and T. K. Whangbo, “Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging,” Cancers, vol. 15, no. 16, August 2023.
- “Cancer of the Brain and Other Nervous System - Cancer Stat Facts,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://seer.cancer.gov/statfacts/html/brain.html
- “Brief summary of YOLOv8 model structure ⋅⋅\cdot⋅ Issue #189 ⋅⋅\cdot⋅ ultralytics/ultralytics,” august 2023, [Online; accessed 13. Aug. 2023]. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/189
- J. Solawetz, “What is YOLOv8? The Ultimate Guide.” Roboflow Blog, December 2023. [Online]. Available: https://blog.roboflow.com/whats-new-in-yolov8
- W. M. Elmessery, J. Gutiérrez, G. G. Abd El-Wahhab, I. A. Elkhaiat, I. S. El-Soaly, S. K. Alhag, L. A. Al-Shuraym, M. A. Akela, F. S. Moghanm, and M. F. Abdelshafie, “Yolo-based model for automatic detection of broiler pathological phenomena through visual and thermal images in intensive poultry houses,” Agriculture, vol. 13, no. 8, p. 1527, 2023.
- G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- J. Cheng, “Brain tumor dataset,” figshare. Dataset, vol. 1512427, no. 5, 2017.
- “vit-pytorch,” 2023, [Online; accessed 31. Aug. 2023]. [Online]. Available: https://github.com/lucidrains/vit-pytorch