Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Real Time Human Detection by Unmanned Aerial Vehicles (2401.03275v1)

Published 6 Jan 2024 in cs.CV and cs.AI

Abstract: One of the most important problems in computer vision and remote sensing is object detection, which identifies particular categories of diverse things in pictures. Two crucial data sources for public security are the thermal infrared (TIR) remote sensing multi-scenario photos and videos produced by unmanned aerial vehicles (UAVs). Due to the small scale of the target, complex scene information, low resolution relative to the viewable videos, and dearth of publicly available labeled datasets and training models, their object detection procedure is still difficult. A UAV TIR object detection framework for pictures and videos is suggested in this study. The Forward-looking Infrared (FLIR) cameras used to gather ground-based TIR photos and videos are used to create the ``You Only Look Once'' (YOLO) model, which is based on CNN architecture. Results indicated that in the validating task, detecting human object had an average precision at IOU (Intersection over Union) = 0.5, which was 72.5\%, using YOLOv7 (YOLO version 7) state of the art model \cite{1}, while the detection speed around 161 frames per second (FPS/second). The usefulness of the YOLO architecture is demonstrated in the application, which evaluates the cross-detection performance of people in UAV TIR videos under a YOLOv7 model in terms of the various UAVs' observation angles. The qualitative and quantitative evaluation of object detection from TIR pictures and videos using deep-learning models is supported favorably by this work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: