Emergent Mind

Abstract

As a powerful tool for modeling graph data, Graph Neural Networks (GNNs) have received increasing attention in both academia and industry. Nevertheless, it is notoriously difficult to deploy GNNs on industrial scale graphs, due to their huge data size and complex topological structures. In this paper, we propose GLISP, a sampling based GNN learning system for industrial scale graphs. By exploiting the inherent structural properties of graphs, such as power law distribution and data locality, GLISP addresses the scalability and performance issues that arise at different stages of the graph learning process. GLISP consists of three core components: graph partitioner, graph sampling service and graph inference engine. The graph partitioner adopts the proposed vertex-cut graph partitioning algorithm AdaDNE to produce balanced partitioning for power law graphs, which is essential for sampling based GNN systems. The graph sampling service employs a load balancing design that allows the one hop sampling request of high degree vertices to be handled by multiple servers. In conjunction with the memory efficient data structure, the efficiency and scalability are effectively improved. The graph inference engine splits the $K$-layer GNN into $K$ slices and caches the vertex embeddings produced by each slice in the data locality aware hybrid caching system for reuse, thus completely eliminating redundant computation caused by the data dependency of graph. Extensive experiments show that GLISP achieves up to $6.53\times$ and $70.77\times$ speedups over existing GNN systems for training and inference tasks, respectively, and can scale to the graph with over 10 billion vertices and 40 billion edges with limited resources.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.