Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AFSPP: Agent Framework for Shaping Preference and Personality with Large Language Models (2401.02870v1)

Published 5 Jan 2024 in cs.MA, cs.AI, and cs.CL

Abstract: The evolution of LLMs has introduced a new paradigm for investigating human behavior emulation. Recent research has employed LLM-based Agents to create a sociological research environment, in which agents exhibit behavior based on the unfiltered characteristics of LLMs. However, these studies overlook the iterative development within a human-like setting - Human preferences and personalities are complex, shaped by various factors and subject to ongoing change as a result of environmental and subjective influences. In light of this observation, we propose Agent Framework for Shaping Preference and Personality (AFSPP), exploring the multifaceted impact of social networks and subjective consciousness on LLM-based Agents' preference and personality formation. With AFSPP, we have, for the first time, successfully replicated several key findings from human personality experiments. And other AFSPP-based experimental results indicate that plan making, sensory perceptions and social networking with subjective information, wield the most pronounced influence on preference shaping. AFSPP can significantly enhance the efficiency and scope of psychological experiments, while yielding valuable insights for Trustworthy Artificial Intelligence research for strategies to prevent undesirable preference and personality development.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, “Generative agents: Interactive simulacra of human behavior,” 2023.
  2. Z. Wang, Y. Y. Chiu, and Y. C. Chiu, “Humanoid agents: Platform for simulating human-like generative agents,” 2023.
  3. G. J. Boyle, “Myers-briggs type indicator (mbti): Some psychometric limitations,” Australian Psychologist, vol. 30, no. 1, pp. 71–74, 1995.
  4. X. Li, Y. Li, S. Joty, L. Liu, F. Huang, L. Qiu, and L. Bing, “Does gpt-3 demonstrate psychopathy? evaluating large language models from a psychological perspective,” 2022.
  5. K. Pan and Y. Zeng, “Do llms possess a personality? making the mbti test an amazing evaluation for large language models,” 2023.
  6. A. Furnham, S. C. Richards, and D. L. Paulhus, “The dark triad of personality: A 10 year review,” Social and Personality Psychology Compass, vol. 7, no. 4, pp. 199–216, 2013.
  7. D. N. Jones and D. L. Paulhus, “Introducing the short dark triad (sd3),” Assessment, vol. 21, no. 1, pp. 28–41, 2013.
  8. C. Qian, X. Cong, W. Liu, C. Yang, W. Chen, Y. Su, Y. Dang, J. Li, J. Xu, D. Li, Z. Liu, and M. Sun, “Communicative agents for software development,” 2023.
  9. R. Suzuki and T. Arita, “An evolutionary model of personality traits related to cooperative behavior using a large language model,” 2023.
  10. A. H. Maslow, “A theory of human motivation,” Psychological Review, vol. 50, no. 4, pp. 370–396, 1943.
  11. Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou, R. Zheng, X. Fan, X. Wang, L. Xiong, Y. Zhou, W. Wang, C. Jiang, Y. Zou, X. Liu, Z. Yin, S. Dou, R. Weng, W. Cheng, Q. Zhang, W. Qin, Y. Zheng, X. Qiu, X. Huang, and T. Gui, “The rise and potential of large language model based agents: A survey,” 2023.
  12. G. Jiang, M. Xu, S.-C. Zhu, W. Han, C. Zhang, and Y. Zhu, “Evaluating and inducing personality in pre-trained language models,” 2022.
  13. L. R. Goldberg, “The structure of phenotypic personality traits,” American Psychologist, vol. 48, no. 1, pp. 26–34, 1993.
  14. L. M. Csepregi, “The effect of context-aware llm-based npc conversations on player engagement in role-playing video games,” [Unpublished manuscript], 2021. [Online]. Available: https://projekter.aau.dk/projekter/files/536738243/The_Effect_of_Context_aware_LLM_based_NPC_Dialogues_on_Player_Engagement_in_Role_playing_Video_Games.pdf
  15. Electronic Arts, “The sims 3,” [Video game], 2009.
  16. G. Caron and S. Srivastava, “Identifying and manipulating the personality traits of language models,” 2022.
  17. I. P. Pavlov, “Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex,” Annals of neurosciences, vol. 17, no. 3, pp. 136–141, 2010.
  18. S. Lee, “A study on relationship between mbti personality tendency and holland personality type,” in 85th International Scientific Conference on Economic and Social Development, Porto, 7 2022.
  19. P. I. Armstrong, S. X. Day, J. P. McVay, and J. Rounds, “Holland’s riasec model as an integrative framework for individual differences,” Journal of Counseling Psychology, vol. 55, no. 1, pp. 1–18, 2008.
  20. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” 2023.
  21. M. Binz and E. Schulz, “Using cognitive psychology to understand gpt-3,” Proceedings of the National Academy of Sciences, vol. 120, no. 6, p. e2218523120, 2023.
  22. K. Dill and L. Martin, “A game ai approach to autonomous control of virtual characters,” in Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC’11), Orlando, FL, USA, 2011.
  23. L. M. Csepregi, “The effect of context-aware llm-based npc conversations on player engagement in role-playing video games.”
  24. Y. Hu, K. Song, S. Cho, X. Wang, H. Foroosh, and F. Liu, “Decipherpref: Analyzing influential factors in human preference judgments via gpt-4,” Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
  25. D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy artificial intelligence: A review,” Feb 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3491209
  26. J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves. in: Proceedings of the 23rd international conference on machine learning, pp. 233–240,” Jun 2006. [Online]. Available: https://dl.acm.org/doi/10.1145/1143844.1143874
  27. D. M. W. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation,” 2020.
  28. OpenAI*, “Gpt-4 technical report,” 2023.
  29. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” 2020.
  30. Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and C. Wang, “Autogen: Enabling next-gen llm applications via multi-agent conversation,” 2023.
  31. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” 2022.
  32. P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences,” 2017.
  33. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.
  34. S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer, “Rethinking the role of demonstrations: What makes in-context learning work?” 2022.
  35. S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” 2023.
  36. W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of large language models,” 2023.
  37. B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone, “Llm+p: Empowering large language models with optimal planning proficiency,” 2023.
  38. N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents with verbal reinforcement learning,” 2023.
  39. S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and acting in language models,” 2022.
  40. H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. K. Jain, and J. Tang, “Trustworthy ai: A computational perspective,” 2021.
  41. S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics: Design principles and model abilities,” 2023.
  42. Y. Mu, Q. Zhang, M. Hu, W. Wang, M. Ding, J. Jin, B. Wang, J. Dai, Y. Qiao, and P. Luo, “Embodiedgpt: Vision-language pre-training via embodied chain of thought,” 2023.
  43. W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu, Y.-H. Hung, C. Qian, Y. Qin, X. Cong, R. Xie, Z. Liu, M. Sun, and J. Zhou, “Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors,” 2023.
  44. G. Chen, S. Dong, Y. Shu, G. Zhang, J. Sesay, B. F. Karlsson, J. Fu, and Y. Shi, “Autoagents: A framework for automatic agent generation,” 2023.
  45. X. Chen, S. Zhang, P. Zhang, L. Zhao, and J. Chen, “Asking before action: Gather information in embodied decision making with language models,” 2023.
Citations (3)

Summary

  • The paper presents AFSPP, a framework that simulates human-like behavior by modeling decision-making and personality using LLMs in a controlled sandbox.
  • The study employs Qunit's Cafe as a testbed where agents exhibit adaptive behavior driven by social interactions and sensory feedback.
  • Experimental results demonstrate that environmental manipulations and attitude injections significantly shape preferences and validate agent-based psychological research.

AFSPP: Agent Framework for Shaping Preference and Personality with LLMs

Overview

The paper presents the Agent Framework for Shaping Preference and Personality (AFSPP), designed to explore the influences of social networks and subjective consciousness on the preferences and personalities of agents modeled by LLMs. This framework utilizes a miniature sandbox environment, reminiscent of sociological research methods, to emulate human behavior and cognition, providing insights into psychological experiment simulations that are cumbersome or unethical to conduct with human subjects. Figure 1

Figure 1: Overview of LLM-based Agent's Activities and Components in the Miniature Sandbox World - Qunit's Cafe

Conceptual Framework

Qunit's Cafe Sandbox Environment

Qunit's Cafe, a simulated environment, serves as the testbed for the AFSPP. In this space, LLM-based agents, such as Anty, Agnes, and Qunit, engage in various activities including decision-making, communication, and plan-making. The environment's structure promotes the emulation of human-like interactions, allowing the evaluation of personality and preference evolution based on environmental and interactive stimuli. Figure 2

Figure 2: Layout of the Miniature Sandbox World - Qunit's Cafe

Agent Operational Mechanics

The mechanics of the agents within Qunit's Cafe are meticulously designed to reflect human-like decision-making processes:

  • Actions and Communication: Agents select actions based on recent memory, identity, and planned behavior. Communications are influenced by prior interactions and emerging goals.
  • Attitude Injection: Attitudes of agents are modifiable through encoded instructions, allowing the analysis of network influence on preference shaping.
  • Sensory Perception and Memory: Agents experience distinct sensory feedback from their actions, which in turn affects their basic states of happiness, energy, and satiety.
  • Reflection and Planning: Based on their experiences, agents update their strategies and plans for future engagement to maximize a predefined happiness metric.

Framework for Shaping Preferences and Personalities

Preference Shaping

Preference is defined by action frequency in response to sensory and social stimuli. AFSPP focuses on the quantification of preference by manipulating social relationships and subjective input.

Personality Shaping

The personality aspect employs instruments like MBTI and SD3 to evaluate agents' traits. Social interactions are engineered to test the influence of different personality factors and attitudes on agents' development. The process reflects the potential for LLM-based agents to provide insights paralleling human psychological research methodologies. Figure 3

Figure 3: Agent Framework for Shaping Preference and Personality

Experimental Insights

The experiment section elaborates how different factors like plan-making, subjective consciousness, and social networks impact the formation of agent preferences and personalities. The results highlight:

  • Social networks imbued with subjective information significantly alter agents' behavior patterns.
  • Plan-making and sensory perception are pivotal in preference alignment, demonstrating an agent's capacity to emulate human-conditioned reflexes.
  • Personality experiments align with human psychological findings, reinforcing the potential of agent-based research as a proxy for human studies.

Implications and Future Directions

The paper provides a template for deploying LLM-based agents in psychological and sociological research. It opens avenues for exploring behavioral patterns in a controlled yet scalable manner, offering a viable alternative for studies that traditional human-centric approaches could not ethically or practically manage. Future research could involve refining the environmental models and integrating diverse LLM architectures to enhance validity and scalability.

Conclusion

AFSPP represents a significant stride in using LLMs for behavioral science applications, emphasizing the dynamic interaction of social and cognitive factors in shaping agent-like human preferences and personality. The alignment with human psychological benchmarks establishes the framework's potential as a robust simulation tool, facilitating studies on behavioral impacts that guide future AI safety and trustworthiness measures.

In summary, this paper introduces a systematic method within a sandbox environment to advance the understanding of human-like AI agents' adaptability, offering an experimental paradigm for more nuanced personality and preference studies.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: