Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Comparative Evaluation of RGB-D SLAM Methods for Humanoid Robot Localization and Mapping (2401.02816v1)

Published 5 Jan 2024 in cs.RO

Abstract: In this paper, we conducted a comparative evaluation of three RGB-D SLAM (Simultaneous Localization and Mapping) algorithms: RTAB-Map, ORB-SLAM3, and OpenVSLAM for SURENA-V humanoid robot localization and mapping. Our test involves the robot to follow a full circular pattern, with an Intel RealSense D435 RGB-D camera installed on its head. In assessing localization accuracy, ORB-SLAM3 outperformed the others with an ATE of 0.1073, followed by RTAB-Map at 0.1641 and OpenVSLAM at 0.1847. However, it should be noted that both ORB-SLAM3 and OpenVSLAM faced challenges in maintaining accurate odometry when the robot encountered a wall with limited feature points. Nevertheless, OpenVSLAM demonstrated the ability to detect loop closures and successfully relocalize itself within the map when the robot approached its initial location. The investigation also extended to mapping capabilities, where RTAB-Map excelled by offering diverse mapping outputs, including dense, OctoMap, and occupancy grid maps. In contrast, both ORB-SLAM3 and OpenVSLAM provided only sparse maps.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. Leonard, “Past, present, and future of simultaneous localization and mapping: Towards the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, p. 1309–1332, 2016.
  2. A. M. Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A comprehensive survey of visual slam algorithms,” Robotics.
  3. K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to visual odometry and visual slam: Applications to mobile robotics,” Intelligent Industrial Systems, vol. 1, pp. 289–311, 2015.
  4. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monocular slam system,” IEEE transactions on robotics, 2015.
  5. R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
  6. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Transactions on Robotics, 2021.
  7. M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation,” Journal of Field Robotics, 2019.
  8. D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.
  9. S. Ahn, S. Yoon, S. Hyung, N. Kwak, and K. S. Roh, “On-board odometry estimation for 3d vision-based slam of humanoid robot,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2012, pp. 4006–4012.
  10. E. Wirbel, B. Steux, S. Bonnabel, and A. de La Fortelle, “Humanoid robot navigation: From a visual slam to a visual compass,” in 2013 10th IEEE international conference on networking, sensing and control (ICNSC).   IEEE, 2013, pp. 678–683.
  11. W. Gouda, W. Gomaa, and T. Ogawa, “Vision based slam for humanoid robots: A survey,” in 2013 Second International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC).   IEEE, 2013, pp. 170–175.
  12. R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual slam fusing proprioception for a humanoid robot,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  13. O. Stasse, A. J. Davison, R. Sellaouti, and K. Yokoi, “Real-time 3d slam for humanoid robot considering pattern generator information,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
  14. E. Hourdakis, S. Piperakis, and P. Trahanias, “roboslam: Dense rgb-d slam for humanoid robots,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 2224–2231.
  15. T. Zhang, E. Uchiyama, and Y. Nakamura, “Dense rgb-d slam for humanoid robots in the dynamic humans environment,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).
  16. T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davison, “Elasticfusion: Dense slam without a pose graph.”   Robotics: Science and Systems, 2015.
  17. A. Tanguy, D. De Simone, A. I. Comport, G. Oriolo, and A. Kheddar, “Closed-loop mpc with dense visual slam-stability through reactive stepping,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 1397–1403.
  18. S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: A versatile visual slam framework,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 2292–2295.
  19. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in 2011 International conference on computer vision.   Ieee, 2011, pp. 2564–2571.
  20. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g 2 o: A general framework for graph optimization,” in 2011 IEEE International Conference on Robotics and Automation.   IEEE, 2011.
  21. A. Vedadi, K. Sinaei, P. Abdolahnezhad, S. S. Aboumasoudi, and A. Yousefi-Koma, “Bipedal locomotion optimization by exploitation of the full dynamics in dcm trajectory planning,” in 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), 2021.
  22. P. Abdolahnezhad, A. Yousefi-Koma, A. Vedadi, K. Sinaei, B. Maleki, and M. Shafiee, “Online bipedal locomotion adaptation for stepping on obstacles using a novel foot sensor,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), 2022, pp. 344–349.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.