Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Global solution to sensor network localization: A non-convex potential game approach and its distributed implementation (2401.02471v1)

Published 4 Jan 2024 in math.OC, cs.GT, and cs.MA

Abstract: Consider a sensor network consisting of both anchor and non-anchor nodes. We address the following sensor network localization (SNL) problem: given the physical locations of anchor nodes and relative measurements among all nodes, determine the locations of all non-anchor nodes. The solution to the SNL problem is challenging due to its inherent non-convexity. In this paper, the problem takes on the form of a multi-player non-convex potential game in which canonical duality theory is used to define a complementary dual potential function. After showing the Nash equilibrium (NE) correspondent to the SNL solution, we provide a necessary and sufficient condition for a stationary point to coincide with the NE. An algorithm is proposed to reach the NE and shown to have convergence rate $\mathcal{O}(1/\sqrt{k})$. With the aim of reducing the information exchange within a network, a distributed algorithm for NE seeking is implemented and its global convergence analysis is provided. Extensive simulations show the validity and effectiveness of the proposed approach to solve the SNL problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.