Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Classification of Model Errors on ImageNet (2401.02430v1)

Published 13 Nov 2023 in cs.CV, cs.AI, and cs.LG

Abstract: While the ImageNet dataset has been driving computer vision research over the past decade, significant label noise and ambiguity have made top-1 accuracy an insufficient measure of further progress. To address this, new label-sets and evaluation protocols have been proposed for ImageNet showing that state-of-the-art models already achieve over 95% accuracy and shifting the focus on investigating why the remaining errors persist. Recent work in this direction employed a panel of experts to manually categorize all remaining classification errors for two selected models. However, this process is time-consuming, prone to inconsistencies, and requires trained experts, making it unsuitable for regular model evaluation thus limiting its utility. To overcome these limitations, we propose the first automated error classification framework, a valuable tool to study how modeling choices affect error distributions. We use our framework to comprehensively evaluate the error distribution of over 900 models. Perhaps surprisingly, we find that across model architectures, scales, and pre-training corpora, top-1 accuracy is a strong predictor for the portion of all error types. In particular, we observe that the portion of severe errors drops significantly with top-1 accuracy indicating that, while it underreports a model's true performance, it remains a valuable performance metric. We release all our code at https://github.com/eth-sri/automated-error-analysis .

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.