Papers
Topics
Authors
Recent
2000 character limit reached

Iterative Mask Filling: An Effective Text Augmentation Method Using Masked Language Modeling (2401.01830v1)

Published 3 Jan 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Data augmentation is an effective technique for improving the performance of machine learning models. However, it has not been explored as extensively in NLP as it has in computer vision. In this paper, we propose a novel text augmentation method that leverages the Fill-Mask feature of the transformer-based BERT model. Our method involves iteratively masking words in a sentence and replacing them with LLM predictions. We have tested our proposed method on various NLP tasks and found it to be effective in many cases. Our results are presented along with a comparison to existing augmentation methods. Experimental results show that our proposed method significantly improves performance, especially on topic classification datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.