Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Micro-macro Parareal, from ODEs to SDEs and back again (2401.01798v2)

Published 3 Jan 2024 in math.NA, cs.NA, and stat.CO

Abstract: In this paper, we are concerned with the micro-macro Parareal algorithm for the simulation of initial-value problems. In this algorithm, a coarse (fast) solver is applied sequentially over the time domain, and a fine (time-consuming) solver is applied as a corrector in parallel over smaller chunks of the time interval. Moreover, the coarse solver acts on a reduced state variable, which is coupled to the fine state variable through appropriate coupling operators. We first provide a contribution to the convergence analysis of the micro-macro Parareal method for multiscale linear ordinary differential equations (ODEs). Then, we extend a variant of the micro-macro Parareal algorithm for scalar stochastic differential equations (SDEs) to higher-dimensional SDEs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. L. Arnold. Stochastic differential equations: theory and applications. Wiley, New York, 1974. ISBN 978-0-471-03359-2.
  2. Parallel in time algorithms with reduction methods for solving chemical kinetics. Communications in Applied Mathematics and Computational Science, 5(2):241–263, Dec. 2010. ISSN 2157-5452, 1559-3940. doi:10.2140/camcos.2010.5.241.
  3. I. Bossuyt. micro-macro-parareal-anziam, 2023. URL https://gitlab.kuleuven.be/numa/public/micro-macro-Parareal-ANZIAM.
  4. Monte-Carlo/Moments micro-macro Parareal method for unimodal and bimodal scalar McKean-Vlasov SDEs, Oct. 2023. URL http://arxiv.org/abs/2310.11365. arXiv:2310.11365 [math.NA, physics, stat].
  5. M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration method. SIAM Journal on Scientific Computing, 29(2):556–578, 2007. ISSN 10648275. doi:10.1137/05064607X.
  6. A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms. SIAM Journal on Scientific Computing, 45(5):A2275–A2303, Oct. 2023. ISSN 1064-8275, 1095-7197. doi:10.1137/22M1487163.
  7. P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Number 23 in Applications of mathematics. Springer, Berlin Heidelberg, 1999. ISBN 978-3-540-54062-5 978-3-642-08107-1.
  8. A micro-macro parareal algorithm: application to singularly perturbed differential equations. SIAM Journal on Scientific Computing, 2013-01, 35(4):p.A1951–A1986, 2013. doi:10.1137/120872681.
  9. Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math., 332(7):661–668, 2001. ISSN 0764-4442. doi:10.1016/S0764-4442(00)01793-6. URL https://doi.org/10.1016/S0764-4442(00)01793-6.
  10. C. Rackauckas and Q. Nie. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software, 5(1):15, May 2017. ISSN 2049-9647. doi:10.5334/jors.151.
  11. A. J. Roberts. Model Emergent Dynamics in Complex Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, Jan. 2014. ISBN 978-1-61197-355-6 978-1-61197-356-3. doi:10.1137/1.9781611973563.
  12. R. Rodriguez and H. C. Tuckwell. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Physical Review E, 54(5):5585–5590, Nov. 1996. ISSN 1063-651X, 1095-3787. doi:10.1103/PhysRevE.54.5585.
  13. A.-S. Sznitman. Topics in propagation of chaos. In P.-L. Hennequin, editor, Ecole d’Eté de Probabilités de Saint-Flour XIX — 1989, volume 1464, pages 165–251. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991. ISBN 978-3-540-53841-7 978-3-540-46319-1. doi:10.1007/BFb0085169. Series Title: Lecture Notes in Mathematics.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com