Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Complete Landscape for the Price of Envy-Freeness (2401.01516v1)

Published 3 Jan 2024 in cs.GT

Abstract: We study the efficiency of fair allocations using the well-studied price of fairness concept, which quantitatively measures the worst-case efficiency loss when imposing fairness constraints. Previous works provided partial results on the price of fairness with well-known fairness notions such as envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX). In this paper, we give a complete characterization for the price of envy-freeness in various settings. In particular, we first consider the two-agent case under the indivisible-goods setting and present tight ratios for the price of EF1 (for scaled utility) and EFX (for unscaled utility), which resolve questions left open in the literature. Next, we consider the mixed goods setting which concerns a mixture of both divisible and indivisible goods. We focus on envy-freeness for mixed goods (EFM), which generalizes both envy-freeness and EF1, as well as its strengthening called envy-freeness up to any good for mixed goods (EFXM), which generalizes envy-freeness and EFX. To this end, we settle the price of EFM and EFXM by providing a complete picture of tight bounds for two agents and asymptotically tight bounds for $n$ agents, for both scaled and unscaled utilities.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube